MARCOT Pathfinder is a precursor for MARCOT (Multi Array of Combined Telescopes) at Calar Alto Observatory (CAHA) in Spain. MARCOT is intended to provide CARMENES, currently fiber-fed from the CAHA 3.5m Telescope, with a 5-15m light collecting area from a battery of several tens of small telescopes that are incoherently fed into the final joint single fiber feed of the spectrograph. The modular concept, based on commercially available telescopes, results in cost estimates that are a fraction of the ones for extremely large telescopes (ELT). As a novel approach, MARCOT will employ Multi-Mode Photonic Lanterns (MM-PL) that are being developed as a variant of classical photonic lanterns, to combine the light from the individual telescopes to a single fiber feed to the instrument. This progress report presents the overall concept of MARCOT, the pathfinder telescope and enclosure that is being commissioned at CAHA, the concept of MM-PL, and the next step of installing the Potsdam Multiplex Raman Spectrograph (MRS). MARCOT Pathfinder will be used to validate the conceptual design and predicted performance of MM-PL on sky with a 7-unit telescope prototype.
GATOS (GTC Astrophysical Transient Octuple-channel imaging Spectrograph) is a multi-channel imager and spectrograph capable of simultaneously obtaining images of the same field in 8 optical and near-infrared bands or alternatively performing spectroscopy covering the range between 3500 and 23500 Angstrom in a single shot at a resolving power of R ∼ 4000. State-of-the-art detectors envisioned for this instrument will have negligible readout times and be able to perform high-time-resolution observations. An integral-field mode covering the same range simultaneously will be a crucial element of the design. In its current design, the integral-field unit covers a field of 12" × 8" with 0.6" slitlets. Finally, we aim to include a unique spectropolarimetry unit that will give GTC the first broad-band spectropolarimeter on a 10 m class telescope. The design is an evolution of the OCTOCAM concept that was selected to be built at Gemini, and is now known as SCORPIO.
This paper presents the concept of a community-accessible stratospheric balloon-based observatory that is currently under preparation by a consortium of European research institutes and industry.
The planned European Stratospheric Balloon Observatory (ESBO) aims at complementing the current landscape of scientific ballooning activities by providing a service-centered infrastructure tailored towards broad astronomical use. In particular, the concept focuses on reusable platforms with exchangeable instruments and telescopes performing regular flights and an operations concept that provides researchers with options to test and operate own instruments, but later on also a proposal-based access to observations. It thereby aims at providing a complement to ground-, space-based, and airborne observatories in terms of access to wavelength regimes – particularly the ultraviolet (UV) and far infrared (FIR) regimes –, spatial resolution capability, and photometric stability. Within the currently ongoing ESBO Design Study (ESBO DS), financed within the European Union’s Horizon 2020 Programme, a prototype platform carrying a 0.5-m telescope for UV and visible light observations is being built and concepts for larger following platforms, leading up to a next-generation FIR telescope are being studied. A flight of the UV/visible prototype platform is currently foreseen for 2021.
We present the technical motivation, science case, instrumentation, and a two-stage image stabilization approach of the 0.5-m UV/visible platform. In addition, we briefly describe the novel mid-sized stabilized balloon gondola under design to carry telescopes in the 0.5 to 0.6 m range as well as the currently considered flight option for this platform.
Secondly, we outline the scientific and technical motivation for a large balloon-based FIR telescope and the ESBO DS approach towards such an infrastructure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.