Resonant tunneling diode (RTD) integration with photo detector (PD) from epi-layer design shows great potential for combining terahertz (THz) RTD electronic source with high speed optical modulation. With an optimized layer structure, the RTD-PD presented in the paper shows high stationary responsivity of 5 A/W at 1310 nm wavelength. High power microwave/mm-wave RTD-PD optoelectronic oscillators are proposed. The circuitry employs two RTD-PD devices in parallel. The oscillation frequencies range from 20-44 GHz with maximum attainable power about 1 mW at 34/37/44GHz.
The ability to use resonant tunneling diodes (RTDs) as both transmitters and receivers is an emerging topic, especially with regards to wireless communications. Successful data transmission has been achieved using electronic RTDs with carrier frequencies exceeding 0.3 THz. Specific optical-based RTDs, which act as photodetectors, have been developed by adjusting the device structure to include a light absorption layer and small optical windows on top of the device to allow direct optical access. This also allows the optical signal to directly modulate the RTD oscillation. Both types of RTD oscillators will allow for seamless integration of high frequency radio and optical fiber networks.
Resonant tunneling diodes (RTDs) have been extensively studied due to their potential applications in very high speed electronics, optical communications, and terahertz generation. In this work, we report the latest results on the characterization of the resonant tunneling diode photo-detectors (RTD-PDs), incorporating InGaAlAs light sensitive layers for sensing at the telecommunication wavelength of λ = 1310 nm. We have measured responsivities up to 28.8 A/W and light induced voltage shift of 204.8 V/W for light injection powers around 0.25 mW.
This paper will discuss resonant tunnelling diode (RTD) sources being developed on a European project iBROW (ibrow.project.eu) to enable short-range multi-gigabit wireless links and microwave-photonic interfaces for seamless links to the optical fibre backbone network. The practically relevant output powers are at least 10 mW at 90 GHz, 5 mW at 160 GHz and 1 mW at 300 GHz and simulation and some experimental results show that these are feasible in RTD technology. To date, 75 - 315 GHz indium phosphide (InP) based RTD oscillators with relatively high output powers in the 0.5 – 1.1 mW range have been demonstrated on the project. They are realised in various circuit topologies including those that use a single RTD device, 2 RTD devices and up to 4 RTD devices for increasingly higher output power. The oscillators are realised using only photolithography by taking advantage of the large micron-sized but broadband RTD devices. The paper will also describe properties of RTD devices as photo-detectors which makes this a unified technology that can be integrated into both ends of a wireless link, namely consumer portable devices and fibre-optic supported base-stations (since integration with laser diodes is also possible).
In this paper, a prototype G-band (140 GHz-220 GHz) monolithic microwave integrated circuit (MMIC) resonant tunneling diode (RTD) oscillator is reported. The oscillator employs two In0.53Ga0.47As/AlAs RTD devices in the circuit to increase the output power. The measured output power was about 0.34 mW (-4.7 dBm) at 165.7 GHz, which is the highest power reported for RTD oscillator in G-band frequency range. This result demonstrates the validity of the high frequency/high power RTD oscillator design. It indicates that RTD devices, as one of the terahertz (THz) source candidates, have promising future for room-temperature THz applications in such as imaging, wireless communication and spectroscopy analysis, etc. By optimizing RTD oscillator design, it is expected that considerably higher power (>1 mW) at THz frequencies (>300 GHz) will be obtained.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.