Surgical excision (Mohs micrographic surgery) is the standard procedure to treat a melanoma, in which an in situ histologic examination of sectioned skin is carried out repeatedly until no cancer cells are detected. The possibility to identify melanoma from the surrounding skin by femtosecond laser-induced breakdown spectroscopy (fs-LIBS) is investigated. For experiments, melanoma induced on a hairless mouse by injection of B16/F10 murine melanoma cell was sampled in the form of frozen tissue sections as in Mohs surgery and analyzed by fs-LIBS (λ = 1030 nm, τ = 550 fs). For analysis, the magnesium signal normalized by carbon intensity was utilized to construct an intensity map around the cancer, including both melanoma and surrounding dermis. The intensity map showed a close match to the optically observed morphological and histological features near the cancer region. The results showed that when incorporated into the existing micrographic surgery procedure, fs-LIBS could be a useful tool for histopathologic interpretation of skin cancer possibly with significant reduction of histologic examination time.
Thus far, there have been tries of detection of disease using fluorescent materials. We introduce the chlorophyll derivatives from food plants, which have longer-wavelength emissions (at >650 nm) than those of fluorescence of tissues and organs, for detection of bowel perforation. To figure out the possibility of fluorescence spectroscopy as a monitoring sensor of bowel perforation, fluorescence from organs of rodent models, intestinal and peritoneal fluids of rodent models and human were analyzed. In IVIS fluorescence image of rodent abdominal organ, visualization of perforated area only was possible when threshold of image is extremely finely controlled. Generally, both perforated area of bowel and normal bowel which filled with large amount of chlorophyll derivatives were visualized with fluorescence. The fluorescence from chlorophyll derivatives penetrated through the normal bowel wall makes difficult to distinguish perforation area from normal bowel with direct visualization of fluorescence. However, intestinal fluids containing chlorophyll derivatives from food contents can leak from perforation sites in situation of bowel perforation. It may show brighter and longer-wavelength regime emissions of chlorophyll derivatives than those of pure peritoneal fluid or bioorgans. Peritoneal fluid mixed with intestinal fluids show much brighter emissions in longer wavelength (at>650 nm) than those of pure peritoneal fluid. In addition, irrigation fluid, which is used for the cleansing of organ and peritoneal cavity, made of mixed intestinal and peritoneal fluid diluted with physiologic saline also can be monitored bowel perforation during surgery.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.