Recent interest in developing fast spintronic devices and laser-controllable magnetic solids has sparked tremendous experimental and theoretical efforts to understand and manipulate ultrafast dynamics in materials. Studies of spin dynamics in the terahertz (THz) frequency range are particularly important for elucidating microscopic pathways toward novel device functionalities. Here, we review THz phenomena related to spin dynamics in rare-earth orthoferrites, a class of materials promising for antiferromagnetic spintronics. We expand this topic into a description of four key elements. (1) We start by describing THz spectroscopy of spin excitations for probing magnetic phase transitions in thermal equilibrium. While acoustic magnons are useful indicators of spin reorientation transitions, electromagnons that arise from dynamic magnetoelectric couplings serve as a signature of inversion-symmetry-breaking phases at low temperatures. (2) We then review the strong laser driving scenario, where the system is excited far from equilibrium and thereby subject to modifications to the free-energy landscape. Microscopic pathways for ultrafast laser manipulation of magnetic order are discussed. (3) Furthermore, we review a variety of protocols to manipulate coherent THz magnons in time and space, which are useful capabilities for antiferromagnetic spintronic applications. (4) Finally, new insights into the connection between dynamic magnetic coupling in condensed matter and the Dicke superradiant phase transition in quantum optics are provided. By presenting a review on an array of THz spin phenomena occurring in a single class of materials, we hope to trigger interdisciplinary efforts that actively seek connections between subfields of spintronics, which will facilitate the invention of new protocols of active spin control and quantum phase engineering.
Single-wall carbon nanotubes (SWCNTs) provide a unique 1D environment in which to examine the physics of interplay between multivalley Dirac band structure and strong Coulomb interactions. Although the 1D nature of individual SWCNTs has stimulated much interest, its macroscopic manifestation has been difficult to observe. We have recently developed a controlled vacuum filtration technique to fabricate wafer-scale films of highly aligned and densely packed SWCNTs. Here, we summarize our accomplishments using these unique samples. We made the first observation of intersubband plasmons – quantum plasmons whose excitation energy is comparable to the quantum confinement energy. We further built an exciton-polariton architecture, which displayed a continuous transition from the ultrastrong-coupling regime to the weak-coupling regime through facile polarization control. The vacuum Rabi splitting exhibited cooperative enhancement when the number of excitons was increased.
Traditionally, strong-field physics explores phenomena in laser-driven matter (atoms, molecules, and solids) that cannot be understood by treating the laser field as a small perturbation. Therefore, the presence of an extremely strong external field is usually a prerequisite for observing strong-field phenomena. However, even in the complete absence of an external electromagnetic field, strong-field phenomena can arise when matter strongly couples with the zero-point field of the quantum vacuum state, i.e., fluctuating electromagnetic waves whose expectation value is zero. This can occur in free space where the matter strongly interacts with a continuum of photon modes, but some of the most striking examples of strong-field physics without an external field occur in a cavity setting, in which an ensemble of two-level atoms resonantly interacts with a single photonic mode of vacuum fields, producing vacuum Rabi splitting. In particular, the nature of the matter-vacuum-field coupled system fundamentally changes when the coupling rate (equal to one half of the vacuum Rabi splitting) becomes comparable to, or larger than, the resonance frequency. In this so-called ultrastrong coupling regime, a non-negligible number of photons exist in the ground state of the coupled system. Furthermore, the coupling rate can be cooperatively enhanced (via so-called Dicke cooperativity) when the matter is comprised of a large number of identical two-level particles, and a quantum phase transition is predicted to occur as the coupling rate reaches a critical value. Low-energy electronic or magnetic transitions in many-body condensed matter systems with large dipole moments are ideally suited for searching for these predicted phenomena. Here, we discuss two condensed matter systems that have shown cooperative ultrastrong interactions in the terahertz frequency range: a Landau-quantized two-dimensional electron gas interacting with high-quality-factor cavity photons, and an Er3+ spin ensemble interacting with Fe3+ magnons in ErFeO3.
Carbon nanotubes (CNTs) have many uses in energy storage, electron emission, molecular electronics, and optoelectronics. Understanding their light-matter interactions is crucial to their development. Here, we study a film of single-walled CNTs with a thickness of 1.67 μm and a 2D orientational order parameter of 0.51, measured by polarized Raman spectroscopy. The film is expected to have a work function of about 5.1 eV. In this study, ~100-fs pulses with 1.5 (ℏω) and 3 eV (2ℏω) photon energy are used to pump the CNT film while observing its electron emission in vacuum. Ultrafast pulses produce nonlinear phenomena in enhanced field emission, as the CNTs absorb strongly enough that thermally excited carriers can tunnel through the potential barrier. Through curve fitting of the power dependence for each pump energy, we find that the light at ℏω is absorbed via 5-photon absorption, and the light at 2ℏω is absorbed via a combination of 2- and 3-photon absorption. Further study reveals a space-charge limited regime with low applied bias, a photoemission regime with moderate bias, and a laser-assisted field emission regime when the bias is high enough that the photon pump is no longer important. Cross-correlation pumping with the two colors simultaneously shows 4x enhancement of the emission, with a FWHM that suggests a lifetime of ~190 fs, similar to the dephasing time of electrons in CNTs. These studies help illuminate the properties of CNTs as a nonlinear optical material and go towards a more thorough understanding of their optoelectronic properties.
High-quality thin films of highly aligned semiconducting single-wall carbon nanotubes have been recently demonstrated. They have excellent absorption and photoluminescence properties; however, fast nonradiative recombination of carriers prevents their use as a gain medium in lasers. Here we predict that such films can operate as efficient sources of ultrashort radiation pulses under the conditions of superfluorescence, i.e. cooperative interband recombination of injected electrons and holes. Superfluorescence develops much faster than nonradiative recombination and leads to high-intensity, coherent pulses of near/mid-infrared radiation.
The newly discovered atomically thin and layered materials which host electronic system that respond to longwavelength light in extraordinary manner can lead to a major breakthrough in the field of terahertz (THz) optics and photonics. However, their low conductivities due to either low densities or low mobility make it challenging to characterize their basic THz properties with the standard spectroscopic method. Here, we develop a THz spectroscopic technique based on parallel plate waveguide (PPWG) to overcome the limitations of the conventional THz time domain spectroscopy (TDS) technique. The present method is particularly suitable to ultrathin conductive materials with low carrier density. We report in details the derivation of the dispersion equations of the terahertz wave propagation in a PPWG loaded by a thin conductive materials with zero-thickness. These dispersion equations for transverse magnetic (TM) and transverse electric (TE) waveguide modes are the core of the optical parameters extraction algorithm in the THz-PPWG-TDS analysis. We demonstrate the effectiveness of the waveguide approach by characterizing low conductive CVD graphene. The high sensitivity of THz-PPWG-TDS technique enables us to study the carrier dynamics in graphene with Drude and Drude-Smith model.
Carbon nanotubes and graphene are promising for diverse terahertz (THz) device applications. Here, we summarize our recent studies on the THz dynamic conductivities and optoelectronic devices of these materials in the THz region. We show that the THz response of single-wall carbon nanotubes (SWCNTs) is dominated by plasmon oscillations along the nanotubes, which lead to extremely anisotropic THz conductivities. By utilizing the strong THz plasmon resonance as well as its pronounced anisotropy in aligned SWCNT films, we built THz polarizers with perfect performance and polarization-sensitive THz detectors that work at room temperature. In addition, we studied the THz conductivities of graphene samples with and without electrical gating. We demonstrated excitation and active control of surface plasmon polaritons in graphene, as well as a graphene THz modulator with a high modulation depth, a high modulation speed, and a designable resonance frequency.
The international nature of science and engineering research demands that students have the skillsets necessary to collaborate internationally. However, limited options exist for science and engineering undergraduates who want to pursue research abroad. The NanoJapan International Research Experience for Undergraduates Program is an innovative response to this need. Developed to foster research and international engagement among young undergraduate students, it is funded by a National Science Foundation Partnerships for International Research and Education (PIRE) grant. Each summer, NanoJapan sends 12 U.S. students to Japan to conduct research internships with world leaders in terahertz (THz) spectroscopy, nanophotonics, and ultrafast optics. The students participate in cutting-edge research projects managed within the framework of the U.S-Japan NSF-PIRE collaboration. One of our focus topics is THz science and technology of nanosystems (or ‘TeraNano’), which investigates the physics and applications of THz dynamics of carriers and phonons in nanostructures and nanomaterials. In this article, we will introduce the program model, with specific emphasis on designing high-quality international student research experiences. We will specifically address the program curriculum that introduces students to THz research, Japanese language, and intercultural communications, in preparation for work in their labs. Ultimately, the program aims to increase the number of U.S. students who choose to pursue graduate study in this field, while cultivating a generation of globally aware engineers and scientists who are prepared for international research collaboration.
We have developed a theory for the generation and detection of coherent phonons in carbon based nanotstructures such as single walled nanotubes (SWNTs), graphene, and graphene nanoribbons. Coherent phonons are generated via the deformation potential electron/hole-phonon interaction with ultrafast photo-excited carriers. They modulate the reflectance or absorption of an optical probe pules on a THz time scale and might be useful for optical modulators. In our theory the electronic states are treated in a third nearest neighbor extended tight binding formalism which gives a good description of the states over the entire Brillouin zone while the phonon states are treated using valence force field models which include bond stretching, in-plane and out-of-plane bond bending, and bond twisting interactions up to fourth neighbor distances. We compare our theory to experiments for the low frequency radial breathing mode (RBM) in micelle suspended single-walled nanotubes (SWNTs). The analysis of such data provides a wealth of information on the dynamics and interplay of photons, phonons and electrons in these carbon based nanostructures.
Graphene and carbon nanotubes provide a variety of new opportunities for fundamental and applied research. Here, we describe results of our recent terahertz and ultrafast studies of carriers and phonons in these materials. Time-domain terahertz spectroscopy is a powerful method for determining the basic properties of charge carriers in a non-contact manner. We show how one can modulate the transmission of terahertz waves through graphene by gating and how one can improve the modulation performance by combining graphene with apertures and gratings. In carbon nanotubes, we demonstrate that the terahertz response is dominated by plasmon oscillations, which are enhanced by collective antenna effects when the nanotubes are aligned. Finally, ultrafast spectroscopy of carbon nanotubes allow us to excite and probe coherent phonons, both in the low-energy radial breathing mode and high-energy G-mode, which are strongly coupled with excitonic interband transitions.
Two photon polymerization (TPP) lithography has been established as a powerful tool to develop 3D fine structures of polymer materials, opening up a wide range applications such as micro-electromechanical systems (MEMS). TPP lithography is also promising for 3D micro fabrication of nanocomposites embedded with nanomaterials such as metal nanoparticles. Here, we make use of TPP lithography to fabricate 3D micro structural single wall carbon nanotube (SWCNT)/polymer composites. SWCNTs exhibit remarkable mechanical, electrical, thermal and optical properties, which leads to enhance performances of polymers by loading SWCNTs. SWCNTs were uniformly dispersed in an acrylate UV-curable monomer including a few amounts of photo-initiator and photo-sensitizer. A femtosecond pulsed laser emitting at 780 nm was focused onto the resin, resulting in the photo-polymerization of a nanometric volume of the resin through TPP. By scanning the focus spot three dimensionally, arbitrary 3D structures were created. The spatial resolution of the fabrication was sub-micrometer, and SWCNTs were embedded in the sub-micro sized structures. The fabrication technique enables one to fabricate 3D micro structural SWCNT/polymer composites into desired shapes, and thus the technique should open up the further applications of SWCNT/polymer composites such as micro sized photomechanical actuators.
We report on combined theoretical and experimental studies of spin-split bands in semiconductors in magnetic fields. We have studied a wide range of systems including: 1) electron and valence band splitting in dilute magnetically doped semiconductors (DMS) systems like InMnAs, 2) electron and valence band splitting in strained InSb/AlInSb heterostructures and 3) valence band splitting in GaAs. The systems have been studied with a variety of experimental techniques including: i) ultra-high magnetic field cyclotron resonance ii) magnetoabsorption and iii) optically pumped NMR (OPNMR). Calculations are based on the 8-band Pidgeon-Brown model generalized to include the effects of the quantum confinement potential as well as pseudomorphic strain at the interfaces and sp-d coupling between magnetic impurities and conduction band electrons and valence band holes. Optical properties are calculated within the golden rule approximation and compared with experiments. Detailed comparison to experiment allows one to accurately determine conduction and valence band parameters including effective masses and g-factors. Results for InMnAs show shifts in the cyclotron resonance peaks with Mn doping. For InSb, we find a sensitive dependence of the elecronic structure on the strain at the pseudomorphic interfaces. For GaAs, we show that OPNMR allows us to spin-resolve the valence bands and that structure in the OPNMR signal is dominated by the weaker light hole to conduction band Landau level transitions.
We discuss possible applications of (III,Mn)V ferromagnetic semiconductors as novel magneto-optical devices for
optoelectronics. These materials systems possess several distinguishing characteristics that make them attractive
candidates for such applications. Processing technology for III-V compound semiconductors is very well established and
can be employed for these materials. Illumination with light can induce much stronger changes in their electronic,
magnetic, and optoelectronic properties than in ferromagnetic metals. Furthermore, electric-field-tunable magnetization,
by utilizing the strong spin-orbit coupling in these materials, may lead to entirely new functionalities unachievable with
conventional magneto-optical materials. We present some CW magneto-optical Kerr effect spectroscopy results for
(III,Mn)V samples and discuss their potential for magneto-optical device applications.
We propose and theoretically investigate mid/far-infrared photodetectors based on frequency up-conversion in a
near-resonant cascade of interband and intersubband transitions in high optical nonlinearity asymmetric quantum
well structures. Such structures can yield high detectivity and responsivity in the bandwidth of the order of
30% of a central frequency in the mid-infrared range. Resonant up-conversion detectors can be designed for
both collinear and perpendicular pump and signal beams. They can be integrated with semiconductor pump
lasers to yield compact devices. We present specific device designs based on GaAs/AlGaAs and InGaAs/AlInAs
heterostructures and calculate their expected figures of merit.
We discuss peculiarities of the nonlinear optical processes utilizing intersubband nonlinearities in high band offset
heterostructures formed by three nearly lattice matched binaries, InAs, GaSb, AlSb, and their alloys. We show that these
materials offer unique benefits for nonlinear optics due to great flexibility in designing optical interaction schemes in a
wide frequency range and very large values of the nonlinear susceptibilities even involving short-wavelength transitions.
The resulting nonlinear conversion efficiency for the second-harmonic or sum-frequency generation is in the mW/W2
range even for very short coherence lengths of the order of several &mgr;m.
We have performed time-resolved terahertz (THz) - near-IR (NIR) two-color spectroscopy on InSb, using the Stanford picosecond free-electron laser synchronized with a femtosecond NIR Ti:Sapphire laser. The initial NIR pulse excites non-equilibrium electron and holes, which absorb the picosecond THz pulse. The time profile of the photo-induced absorption is a sensitive probe of intraband carrier relaxation dynamics. Using these techniques we have made the first observation of time-resolved cyclotron resonance (TRCR) of photo-created electronics in InSb for time delays from a few picoseconds to several tens of nanoseconds. This TRCR data shows possible evidence of a magnetic-field- induced LO-photon bottleneck effect. Furthermore, we have detected very unusual multi-component relaxation and photo- induced transparency under certain conditions.
We have explored near-infrared (NIR)--far-infrared (FIR) two-color optical experiments in quantum-confined semiconductor systems, using NIR radiation from a tunable cw Ti:Sapphire laser and intense and coherent FIR radiation from the UCSB Free-Electron Lasers. In this paper two recent experiments are discussed, both of which provide new insight into the internal structure and dynamics of confined excitons: (1) We have observed for the first time FIR internal transitions associated with the direct exciton in GaAs/AlGaAs quantum wells. The spectrum of excitations is enriched by the complexities of the valence band and differ significantly from simple reduced-mass, hydrogenic models. We provide a critical test of detailed calculations including the valence-band mixing of Bauer and Ando. (2) We have discovered resonant nonlinear optical mixing of NIR and FIR radiation, which results in strong near-bandgap emission lines, or optical sidebands. The sidebands appear when optically-created excitons are driven strongly by intense FIR fields. The frequencies of the sidebands are (omega) NIR +/- 2n(omega) FIR, where (omega) NIR is the interband exciton-creation frequency, (omega) FIR is the frequency of the driving field, and n is an integer. The intensity of the sidebands exhibits pronounced resonances as a function of applied magnetic field, which are well- explained in terms of virtual transitions between magnetically-tuned energy levels in the excitons.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.