Cerenkov fluorescence imaging (CLI) has set a bridge between optical and nuclear imaging technologies by using an optical method to detect the distribution of radiotracers. Combining the emerged CLI technique with a clinical endoscope, the Cerenkov luminescence endoscope (CLE) was developed to avoid the problem of the poor penetration depth of the Cerenkov light. However, due to low energy of the Cerenkov light and the transportation loss during endoscopic imaging, the acquisition time of CLE signal is long and the imaging results are poor, which has limited the clinical applications of CLE. There are two ways to improve the availability of the current CLE system. First is to enhance the emitted signals of the Cerenkov light at the source end by developing new kinds of imaging probes or selecting high yield radionuclides. However, this will introduce the in vivo unfriendly problem in clinical translations. The second method is to improve the detection sensitivity of CLE system by optimizing the structure of the system. Here, we customized four endoscopes with different field of view (FOV) angles of endoscope probe and different monofilament diameters of imaging fiber bundles. By comparing the results obtained by different CLE systems, we optimized the parameters of system. The CLE imaging of 18F-FDG showed that when the distance between the probe and radionuclide source was fixed, smaller angle of FOV and lager monofilament diameter will provide higher collection efficiency.
The aim of this article is to investigate the influence of a tracer injection dose (ID) and camera integration time (IT) on quantifying pharmacokinetics of Cy5.5-GX1 in gastric cancer BGC-823 cell xenografted mice. Based on three factors, including whether or not to inject free GX1, the ID of Cy5.5-GX1, and the camera IT, 32 mice were randomly divided into eight groups and received 60-min dynamic fluorescence imaging. Gurfinkel exponential model (GEXPM) and Lammertsma simplified reference tissue model (SRTM) combined with a singular value decomposition analysis were used to quantitatively analyze the acquired dynamic fluorescent images. The binding potential (Bp) and the sum of the pharmacokinetic rate constants (SKRC) of Cy5.5-GX1 were determined by the SRTM and EXPM, respectively. In the tumor region, the SKRC value exhibited an obvious trend with change in the tracer ID, but the Bp value was not sensitive to it. Both the Bp and SKRC values were independent of the camera IT. In addition, the ratio of the tumor-to-muscle region was correlated with the camera IT but was independent of the tracer ID. Dynamic fluorescence imaging in conjunction with a kinetic analysis may provide more quantitative information than static fluorescence imaging, especially for a priori information on the optimal ID of targeted probes for individual therapy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.