Fiber optic cables have been successfully deployed in ocean floors for decades to enable trans-oceanic telecommunication. The impact of strain and moisture on optical fibers has been thoroughly studied in the past 30 years. Cable designs have been developed to minimize strain on the fibers and prevent water uptake. As a result, the failure rates of optical fibers in subsea telecommunication cables due to moisture and strain are negligible. However, the relatively recent use of fiber optic cables to monitor temperature, acoustics, and especially strain on subsea equipment adds new reliability challenges that need to be mitigated. This paper provides a brief overview of the design for reliability considerations of fiber optic cables for subsea asset condition monitoring (SACM). In particular, experimental results on fibers immersed in water under varying accelerated conditions of static stress and temperature are discussed. Based on the data, an assessment of the survivability of optical fibers in the subsea monitoring environment is presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.