The physics of the bottom tunnel junction (BTJ) and its improvement over standard p-up geometry in InGaN blue LEDs is quantified through pulsed power measurements. It is found that the peak external quantum efficiency (EQE) and wall-plug efficiency (WPE) for a p-down BTJ LED is about threefold that of its counterpart, the p-up top tunnel junction (TTJ) LED. This is contributed to increased radiative recombination and reduced electron overflow. Further, the peaks occur at lower current densities for the BTJ device, suggesting earlier saturation of Shockley-Read-Hall traps. In the droop regime, where electron overflow, device heating, and 3-particle interactions are significant, the performance of the BTJ is found to be consistently better than that of the TTJ, converging at large current densities where the polarization fields are screened.
III-nitride ultraviolet (UV) light emitting diodes (LEDs) with emission wavelengths in the range of 250-280 nm have attracted considerable interest for applications such as germicidal disinfection and biological detection. However, the widely-used AlGaN quantum well (QW)-based LEDs at such wavelengths suffer from low quantum efficiencies. One main factor that limits the AlGaN QW LED efficiency at ~250-280 nm is the suffering of the severe band mixing effect caused by the valence subbands crossover, as well as the Quantum Confined Stark Effect (QCSE). Therefore, the novel AlGaN-delta-GaN QW design was proposed to address these issues in order to realize high-efficiency deep-UV LEDs.
Here, we proposed a novel Al0.9Ga0.1N-delta-GaN QW by inserting an ultra-thin delta-GaN layer into a conventional Al0.9Ga0.1N QW active region. The physics from such QW design was investigated by 6-band k·p model and the structure was experimentally demonstrated by Plasma-assisted Molecular Beam Epitaxy (PAMBE). The calculated results show that the insertion of delta-GaN layer could successfully address the band mixing issue and QCSE, leading to a significant improvement in spontaneous emission rate as compared to that of Al0.55Ga0.45N QW at 260 nm. The 5-period Al0.9Ga0.1N-delta-GaN QW with 3-nm AlN barrier was grown on AlN/sapphire substrate by MBE with ~2-monolayer delta-GaN layer, which was evidenced by the cross-sectional transmission electron microscope. The two-photon photoluminescence spectrum presented a single peak emission centered at 260 nm from the grown Al0.9Ga0.1N-deltaGaN QW with a full width at half maximum of 12 nm, which shows that the demonstrated QW would be promising for high-efficiency UV LEDs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.