A double-cathode photodetector (DCP) featuring a buried-finger structure to achieve improved separation efficiency is
presented. The interleaving comb-shaped cathodes are realized with n-buried implants and they are located in the
p-epitaxial layer roughly 1μm below the surface. Based on MEDICI device simulations several layout variations have
been realized in a slightly modified BiCMOS process. Best results are achieved with a finger distance of 12μm and a
finger width of 1μm: separation efficiencies of 50, 67, and 54% and responsivities of 0.23, 0.47, and 0.38A/W were
measured for the optical wavelengths 410nm, 660nm, and 850nm, respectively. All test structures occupy optical active
areas of around 100×100μm2. A maximum 3dB-modulation bandwidth of almost 300MHz was measured, while dark
currents in the picoampere range are typical for these detectors up to a bias voltage of 5V at room temperature. In the
application of a time-of-flight (TOF) distance measurement sensor, the DCP serves as optical detector and correlating
device at the same time. Distance measurements up to 6.2m were performed with a 650nm laser source that emitted an
average optical power of 1mW using rectangular modulation signals at 10MHz. The standard deviation is better than
1cm up to 3.4m for a total measurement time of 20ms per acquired distance point.
For various industrial applications contact-less optical 3D distance measurement systems with active illumination are suitable. A new approach for a pixel of such a 3D-camera chip for applications in displacement and 3D-shape measurement is presented here. The distance information is gained by measuring the Time-of-Flight (TOF) of photons transmitted by a modulated light source to a diffuse reflecting object and back to the receiver IC. The receiver is implemented as an opto-electronic integrated circuit (OEIC). It consists of a double-cathode photodetector performing an opto-electronic correlation, a decoupling network and an output low-pass filter on a single silicon chip. The correlation of the received optical signal and the electronic modulation signal enables the determination of the phase-shift between them. The phase-shift is directly proportional to the distance of the object. The measurement time for a single distance measurement is 20 ms for a range up to 6.2 m. The standard deviation up to 3.4 m is better than 1cm for a transmitted optical power of 1.2 mW at a wavelength of 650 nm. The OEIC was fabricated in a slightly modified 0.6 &mgr;m BiCMOS technology with a PIN-photodetector. The photosensitive area of the integrated PIN-photodetector is 120x115 &mgr;m2. A fill factor of ~67% is reached.
Contact-less optical distance measurement systems are necessary to obtain 3D-information of an entire scene. To be able to determine depth information of the scene by a sensor without moving parts like e.g. scanner, it is necessary to measure the distance from the camera to an object in every single pixel. A new pixel for such a 3D-camera is presented. The operating principle is based on the time-of-flight (TOF) of laser light from a modulated light source to a diffuse reflecting object and back to the receiver IC. The receiver is implemented as an opto-electronic integrated circuit (OEIC). It consists of a fast, efficient PIN-photodiode having a 3dB bandwidth of about 1.35 GHz, a single-stage transimpedance amplifier and an electronic mixer on a single silicon chip. By correlating the received optical signal and the original electronic modulation signal, the phase-shift between sent and received signal can be determined. By performing correlation with a delayed modulation signal it is possible to eliminate the influence of object reflectivity and background illumination. The measurement time for a single distance measurement is 500μs for a range up to 3.7m. The standard deviation at 2.5m is better than 3cm for a transmitted optical power of 1.44mW at a wavelength of 650nm. The OEIC was fabricated in a slightly modified BiCMOS 0.6μm process. The diameter of the photosensitive area of the integrated PIN-photodiode is 100μm. The effective pixel size is about 220x400μm2. Therefore a fill factor of ~9% is reached.
Integrated optical distance measurement systems based on the Time-of-Flight (TOF) principle open up 3D vision for various applications like e.g. inspection systems. The introduced single pixel consists of both, a PIN photodiode and a signal-processing circuit on chip. Due to eye-safety reasons, the optical illumination power is limited (Popt<2mW). For diffuse reflecting objects in distances up to several meters, signal attenuation of about -50dB occurs with 1-inch optics. Therefore high responsivity of the photodiode is required: R=0.36A/W at 660nm. Resolutions of centimeters matter TOF far below 1ns, i.e. the photodiode has to feature high bandwidth (f3dB=1.35GHz). Distance information is gained by correlation between the modulated transmission signal and the run- ime delayed, attenuated received signal. The readout circuit consists of three stages: the first stage is a broadband current amplifier, realised with current mirrors. The correlation is performed in the second stage by a switching mixer. Amplification and smoothing is performed in the third, active integrator stage. The distance information is derived from the output signal by external sampling and simple data processing. A standard deviation of better than 1% (2%) for distances up to 2m (3.7m) is achieved for measurement durations of 10ms. The primary linearity error of less than 6cm is educed by error correction. The pixel has a fill factor of ~10%, including the overall pixel area of ~460µm×170µm and the photodiode with a diameter of 100µm. The chip was realised in a 0.6µm BiCMOS ASIC process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.