This Conference Presentation, "Photonics packaging: from pluggable transceivers to co-packaged optics," was recorded at Photonics West 2020 held in San Francisco, California, United States.
A high bandwidth optical interconnect is designed based on parallel optical VCSEL links. Large matrices with 168 data channels are utilized exhibiting the highest reported full duplex aggregate bandwidth of 1.34Tb/s. Optical links of 300m are measured with BER < 10-12 while the power efficiency is 10.2 pJ/bit. The interconnect design is that of hybrid device with the III-V optoelectronics assembled directly onto the ASIC using Au/Sn eutectic bonding. Optical packaging is enabled using fiber bundle matrices whose dimensions are identical to those of the optoelectronic chips. The entire chip is assembled onto a system PCB in telecom and datacom applications. The backplane of the system becomes passive optical backplane and is entirely fiber based. The hybrid integration allows for a 3-fold increase in the number of SerDes available on a single package to about 500 lanes.
We report steady-state photoinduced absorption (PIA) and photoinduced reflectance (PIR) in films of MEH-PPV and BCHA- PPV blended with fullerene-based acceptors. Absorption from the metastable charge-transferred state is probed by PIA; the modulated absorption spectrum causes changes in the real part of the index of refraction, (Delta) n, which can be measured directly by PIR. The charge transfer gives rise to pronounced features in (Delta) n, including vibrational structure in the mid- and near-IR. Our measurements over a wide spectral range allow quantitative comparison of (Delta) n obtained from PIR with that obtained from Kramers- Kronig transformation of the PIA data. We find good agreement throughout the IR, indicating that our method for measuring (Delta) n is useful as an analytical tool for optical characterization and for prediction of optical spectral ranges for nonlinear optical response.
Conference Committee Involvement (2)
Optical Interconnects XXII
25 January 2022 | San Francisco, California, United States
Optical Interconnects XXI
6 March 2021 | Online Only, California, United States
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.