Noninvasive cell analyses are increasingly important in the medical field. A coherent anti-Stokes Raman scattering (CARS) microscope is the noninvasive imaging equipment and enables to obtain images indicating molecular distribution. However, due to low-signal intensity, it is still challenging to obtain images of the fingerprint region, in which many spectrum peaks correspond to compositions of a cell. Here, to identify cell differentiation by using multiplex CARS, we investigated hyperspectral imaging of the fingerprint region of living cells. To perform multiplex CARS, we used a prototype of a compact light source generating both pump light and broadband Stokes light. Assuming application to regenerative medicine, we chose a cartilage cell, whose differentiation is difficult to be identified by change of the cell morphology. Because one of the major components of cartilage is collagen, we focused on distribution of proline, which accounts for approximately 20% of collagen. The spectrum quality was improved by optical adjustments of the power branching ratio and divergence of Stokes light. Periphery of a cartilage cell was highlighted in a CARS image of proline, and this result suggests correspondence with collagen generated as an extracellular matrix. The possibility of noninvasive analyses by using CARS hyperspectral imaging was indicated.
Non-invasive cell analyses are increasingly important for medical field. A CARS microscope is one of the non-invasive imaging equipments and enables to obtain images indicating molecular distribution. Some studies on discrimination of cell state by using CARS images of lipid are reported. However, due to low signal intensity, it is still challenging to obtain images of the fingerprint region (800~1800 cm-1), in which many spectrum peaks correspond to compositions of a cell. Here, to identify cell differentiation by using multiplex CARS, we investigated hyperspectral imaging of fingerprint region of living cells. To perform multiplex CARS, we used a prototype of a compact light source, which consists of a microchip laser, a single-mode fiber, and a photonic crystal fiber to generate supercontinuum light. Assuming application to regenerative medicine, we chose a cartilage cell, whose differentiation is difficult to be identified by change of the cell morphology. Because one of the major components of cartilage is collagen, we focused on distribution of proline, which accounts for approximately 20% of collagen in general. The spectrum quality was improved by optical adjustments about power branching ratio and divergence of broadband Stokes light. Hyperspectral images were successfully obtained by the improvement. Periphery of a cartilage cell was highlighted in CARS image of proline, and this result suggests correspondence with collagen generated as extracellular matrix. A possibility of cell analyses by using CARS hyperspectral imaging was indicated.
We developed a low cost, high resolution optical coherence tomography system utilizing a narrowband laser diode (LD), which is usually used in optical pickup for compact disc. To achieve high axial resolution even with the narrow bandwidth of the LD, we have constructed a free space interferometer including a phase-diversity detection system and a high numerical aperture (NA) objective. The axial and lateral resolution in the air was about 2.6 μm and 1 μm, respectively. The tomographic imaging of biological tissue was demonstrated, and the results showed that our OCT system enabled cellular-level imaging.
A novel multi-level scheme using optical phase is proposed. It overcomes drawbacks in conventional multi-level
schemes and greatly enhances capacity and transfer rate of microholographic optical discs. We demonstrate its feature of
high signal-to-noise ratio.
A system using homodyne detection to read out signals from optical discs was simplified by using a high-coherence
laser light source. The quality of the readout signal with the simplified system was substantially greater than with
conventional detection.
We experimentally demonstrated improvement in optical disc readout signal quality by homodyne detection. We
introduced an optical phase servo system as an alternative to the phase-diversity detection scheme for stabilization of the
interference signal in homodyne detection, which resulted in further enhancement of readout signal quality.
Experimental results indicate that at least a 16-layer recordable disc can be reliably read out with a jitter of less than 8%
at a 1-mW read power by homodyne detection. The estimated amplification of signal amplitude was 13 times.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.