Photo-acoustic spectroscopy (PAS) has been successfully applied to detect various gases and chemicals due to its high selectivity and sensitivity. However, the performance of the conventional acoustic sensors prohibits the application of PAS for harsh environment gas species real-time monitoring. By replacing conventional acoustic sensors, such as microphone and piezo-transducers, with a high-temperature Fiber Bragg Grating (FBG) vibration sensor, we developed a fiber-optic PAS sensing system that can be used in high-temperature and high-pressure harsh environments for gas species identification and concentration measurement. A resonant acoustic chamber is designed, and FBG vibration sensor is embedded in the molybdenum membrane. An OPO laser is used for spectrum scanning. Preliminary test on water vapor has been conducted, and the result is analyzed. This sensing technology can be adapted into harsh environments, such as Integrated Gasification Combined Cycle (IGCC) power plant, and provide on-line real-time monitoring of gases species, such as CO, H2O, and O2. Presently, our FBG-based vibration sensor
can withstand the high temperature up to 800°C.
Dynamic response characteristics of silica fiber long-period grating with a modified cladding, composed of
∼10-100 nm nanoparticle palladium oxides thin film material prepared by a magnetron sputtering
technique, have been investigated at several elevated temperatures with a 2%H2/98%N2 mixing gas
concentration. The fiber cladding modified grating, without cladding chemical etching process,
demonstrates 540 pm per 1% H2 sensitivity, a better than 1sec response times at 160oC, respectively. The
thermal responses of the prototype have demonstrated increased dynamic wavelength shift while reducing
response time simultaneously. The observed thermal dependence of the prototype could be attributed to a
combined effect of thermal dependent hydrogen atoms diffusion rate and hydrogen atoms solubility.
It is very critical to develop sensor that can operate in high temperature and chemically harsh environments. Sapphire (Al2O3) material, which possesses a melting point of 2050°C and a wide transmission wavelength region as high as ~3.5μm, has been demonstrated to be an ideal candidate for high temperature fiber-based environmental sensing applications. Under harsh environment, the performance of conventional blackbody radiation based sapphire fiber high temperature sensor could be easily affected due to the lack of cladding. In this paper, a fiber-optic temperature sensor with a single-crystal sapphire fiber as the light guide and a high temperature ceramic coating as the sensing element as well as the protection layer was presented. The radiance emitted from the ceramic coating is used to measure the temperature, and it is transmitted to optical receiver through the sapphire fiber. This ceramic coating greatly improved the stability and dynamical range of pyrometer. Preliminary experimental results demonstrated that the sensor is very promising for measuring ultra-high temperature up to 1900°C in the harsh environment.
Integrated Gasification Combined Cycle (IGCC) power plants have great potential for future clean-coal power generation. Today, the quality of coal is measured by sampling coal using various offline methods, and the syn-gas composition is determined by taking samples downstream of the gasifier and measured by gas chromatograph (GC). Laser induced plasma technology has demonstrated high sensitivity for elementary detection. The capability of free space transmission and focusing of laser beam makes laser induced plasma a unique technology for online compositional analysis in coal gasification environment and optimization control.
We propose a new mechanism for fiber optic high temperature sensing based on whispering gallery mode resonance in bent optical fibers. Due to the strong whispering gallery mode resonance in cladding-thinned bent optical fibers, long-period grating-like deep spectral peaks are formed in the wavelength domain. The wavelength shift of the resonance peaks as a function of temperature is investigated. It is demonstrated that the single loop of bend ring in the fibers can be used as a transducer for high temperature sensing without any internal structure.
Based on radiation mode coupling through a self-formed polymer waveguide extension, efficient single-mode optical coupling can be achieved between active and passive chips while relaxing the stringent positioning requirements. A 20dB improvement can be achieved according to simulation results. Single-mode waveguides have been successfully demonstrated using GE photo-definable polymer materials.
In this paper we describe and demonstrate a new generation of all-optical devices (Demultiplexer, Routing switch and Clock extractor) based on a recently developed Terahertz Optical Asymmetric Demultiplexer. These devices are capable of ultrafast all-optical operation and can be used in the future terabit optical networks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.