In this study, we designed and fabricated GaAs AP-SBDs for a 300 GHz subharmonic mixer. To enhance the reliability of electromagnetic simulations, we measured and calculated the optical parameters of the material in the terahertz range and designed a component with minimal impedance variation across the frequency range of 140-300 GHz. GaAs AP-SBDs were fabricated using MOCVD and an i-line stepper, followed by electrical characterization. Finally, a subharmonic mixer was constructed using WR3.4/WR6.5 waveguides, achieving an single side band conversion loss of 9.72 dB and a 3 dB bandwidth of 40 GHz.
This paper showed the biological response of skin cells, and human newborn foreskin fibroblasts under the irradiation of a photonics-based 300 GHz terahertz source with a beam power of 20 ㎼ which has been usually used as terahertz source of non-destructive testing. We investigated the viability of the cells, cancer-induced biological signals, and aging under the irradiation of terahertz waves.
A band switchable and tunable terahertz (THz) metamaterial based on a vanadium dioxide (VO2) thin film was proposed in the THz frequency regime. To obtain band switching characteristics and reduce THz wave loss, the VO2 thin film was etched in the form of a line. Two rectangular C-shaped resonators were configured to face each other with an etched VO2 thin film line in between. The measurement results of the proposed structure clearly showed that the rectangular C-shaped metamaterial based on the etched VO2 thin film is capable of band switching and continuous transmission control.
The properties of terahertz (THz) radiation make it possible to inspect a variety of non-conductive materials, such as paper, plastic, cloth, etc., without causing damage to the human body. THz wave characteristics have been used in numerous studies on application systems for non-destructive and manufacturing process monitoring as a result.
In this presentation, we introduce how to set up a contactless thickness monitoring system with long-term signal stabilization of CW THz signals to achieve signal stabilization within 1% for 12 hours insensitive to changes in ambient temperature.
In this paper, we will demonstrate a photonics-based 300 GHz THz wireless communication with our new-type dual-mode laser(DML) beating light source which is directly modulated at a rate of more than10 Gbps. Also, we verified that using of the DML is superior in terms of stability and linewidth than other technique of photomixing using a two distributed-feedback(DFB) LDs.
In this work, we reported the 1.55 ㎛ ridge-type dual mode laser(R-DML) as a THz communication beating source. It have many advantages of cost effects, compactness and simplification of fabrication by introducing the ridge-type waveguides. We have demonstrated 10Gbps THz wireless communications with 10-3 BER (bit-error-rate) without digital signal processing.
In this study, we report GaAs SBD-based subharmonic mixer for THz communication in the 220-330 GHz band. n GaAs:Si and n++ GaAs:Si were grown on semi-insulating GaAs substrate by using metal-organic chemical vapor deposition. Antiparallel(AP)-SBD was fabricated using the i-line stepper. The schottky junction, defined to be less than 1 um, has been composed of Ti/Pt/Au. The I-V and C-V characteristics of the fabricated AP-SBD were measured for the ideal factor, series resistance, current parameter, junction capacitance and parasitic capacitance. RF matching and LO and IF filters were designed with HFSS capable of 3D electromagnetic wave computational simulation. We also simulated the GaAs subharmonic mixer circuit using the nonlinear analysis of ADS. The conversion loss of the mixer module was measured and compared with the computational simulation results. Finally, we demonstrate the THz communication with 50 Gbps QPSK signal in the 300 GHz band.
This conference presentation, “Waveguide packaged UTC-PD module for terahertz applications” was presented at the Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XV conference at SPIE Photonics West 2022.
In developing terahertz (THz) technologies that are more suitable for industrial applications, we have focused on research on continuous-wave (CW) THz technologies to develop small, low-cost, and multifunctional THz devices and systems. In the course of this research, we have developed several key devices such as widely tunable compact beating sources in the form of dual mode lasers, THz emitters, including nano-electrode-photomixers and uni-traveling carrier photodiode photomixers, and highly sensitive THz detectors, such as Schottky barrier diodes (SBDs). In this study, along with our recently obtained results that demonstrate the enhanced performance of these devices, we also present an example of a practical industrial application of our CW THz system: a nondestructive evaluation (NDE) system. The system described can be applied in the car manufacturing factory as an NDE technique to find process errors. Although further improvements to photonics-based THz technologies are necessary, we believe that efforts in this field will begin an era of THz technologies as a widely-used industrial technique.
Polarization dependence has been considered undesirable for most photonic devices, as it degrades the performance of photonic systems employing the devices. On the other hand, if the polarization dependence can be all-optically controlled and strongly enhanced at modest optical powers, it would be an attractive means for all-optical polarization control with a large dynamic range and/or polarization extinction ratio.
In this paper, we show that forward stimulated Brillouin scattering (FSBS) can be highly polarization-selective in silicaglass subwavelength elliptical-core optical waveguides suspended in the air, which may be used as a novel way of efficient all-optical polarization control. By using the full-vectorial finite element analysis, we find that at certain core ellipticities FSBS for one polarization mode mediated by a specific phonon mode is almost eliminated, while FSBS for the other polarization mode is rather enhanced. For example, the strong suppression of FSBS is observed for only the polarization mode along the major core axis when the scattering process is mediated by the TR21-like phonon mode. Such the polarization selectiveness is not observed in the case of conventional (backward) stimulated Brillouin scattering. The origin of the intriguing phenomena can be explained in terms of the dielectric perturbation induced by the interplay between electrostriction and radiation pressure. The polarization-selective FSBS is feasible and may be experimentally demonstrated by using microstructured optical fibers with high air-filling fractions or air-suspended slab waveguides fabricated on on-chip platforms. Our study provides a new opportunity of simple waveguide design for engineering boundary-enhanced optical forces and photon-phonon interactions.
We present a terahertz (THz) radiation pumped by a passively mode-locked Yb-doped fiber laser using two fiberpigtailed log-spiral-based low-temperature-grown (LTG) InGaAs photoconductive antenna (PCA) modules. The modelocked fiber laser produces over 220 mW of the average optical power with positively chirped of 1.49 ps pulses. In order to generate THz radiation using the fiber-pigtailed PCA modules, the mode-locked optical pulses are pre-chirped with 538 fs using two diffraction gratings. We successfully achieved THz radiation over 2.0 THz using the pre-chirped pulses. We successfully observed the various absorption lines of water vapor dips in the free space of 120 mm.
Recently, a wide interest has been gathered in using terahertz (THz) waves as the carrier waves for the next generation of broadband wireless communications. Upon this objective, the photonics technologies are very attractive for their usefulness in signal generations, modulations and detections with enhanced bandwidth and data rates, and the readiness in combining to the existing fiber-optic or wireless networks. In this paper, as a preliminary step toward the THz wireless communications, a THz wireless interconnection system with a broadband antenna-integrated uni-traveling-carrier photodiode (UTC-PD) and a Shottky-barrier diode (SBD) module will be presented. In our system, optical beating signals are generated and digitally modulated by the optical intensity modulator driven by a pulse pattern generator (PPG). As the receiver a SBD and an IF filter followed by a low-noise preamplifier and a limiting amplifier was used. With a 6-mA photocurrent of the UTC-PD which corresponds to the transmitter output power of about 30 μW at 280 GHz, an error-free (BER<10-9) transmission has been achieved at 2.5 Gbit/s which is limited by a limiting amplifier. With this system, a 1.485-Gbit/s video signal with a high-definition serial digital interface format was successfully transmitted over a wireless link.
Terahertz (THz) waves have been actively studied for the applications of astronomy, communications, analytical science and bio-technologies due to their low energy and high frequency. For example, THz systems can carry more information with faster rates than GHz systems. Besides, THz waves can be applied to imaging, sensing, and spectroscopy. Furthermore, THz waves can be used for non-destructive and non-harmful tomography of living objects. In this reasons, Schottky barrier diodes (SBD) have been widely used as a THz detector for their ultrafast carrier transport, high responsivity, high sensitivity, and excellent noise equivalent power. Furthermore, SBD detectors envisage developing THz applications at low cost, excellent capability, and high yield. Since the major concerns in the THz detectors for THz imaging systems are the realizations of the real-time image acquisitions via a reduced acquisition time, rather than the conventional raster scans that obtains an image by pixel-by-pixel acquisitions, a line-scan based systems utilizes an array detector with an 1 × n SBD array is preferable.
In this study, we fabricated the InGaAs based SBD array detectors with broadband antennas of log-spiral and square-spiral patterns. To optimize leakage current and ideality factor, the dependence to the doping levels of ohmic and Schottky layers have been investigated. In addition, the dependence to the capacitance and resistance to anode size are also examined as well. As a consequence, the real-time THz imaging with our InGaAs SBD array detector have been successfully obtained.
We successfully demonstrate a THz generation using an ytterbium (Yb)-doped mode-locked femtosecond fiber laser and a home-made low-temperature grown (LTG) InGaAs Photoconductive antenna (PCA) module for THz Time-domain spectroscopy (TDS) systems. The Yb-doped fiber ring laser consists of a pump laser diode (PLD), a wavelength division multiplexer (WDM) coupler, a single-mode fiber (SMF), a 25 cm-long highly Yb-doped fiber, two collimators, two quarter wave plates (QWPs), a half-wave plate (HWP), a 10 nm broadband band pass filter, an isolator, and a polarizing beam splitter (PBS). In order to achieve the passively mode-locked optical short pulse, the nonlinear polarization rotation (NPR) effect is used. The achieved center wavelength and the 3 dB bandwidth of the modelocked fiber laser are 1.03 μm and ~ 15.6 nm, respectively. It has 175 fs duration after pulse compression with 66.2 MHz repetition rate. The average output power of mode-locked laser has more than 275 mW. The LTG-InGaAs PCA modules are used as the emitter and receiver in order to achieve the THz radiation. The PCA modules comprise a hyper-hemispherical Si lens and a log-spiral antenna-integrated LTG-InGaAs PCA chip electronically contacted on a printed circuit board (PCB). An excitation optical average pumping and probing power were ~ 6.3 mW and 5 mW, respectively. The free-space distance between the emitter and the receiver in the THz-TDS system was 70 mm. The spectrum of the THz radiation is achieved higher than 1.5 THz.
Our recent studies in regards of developing portable THz scanner for imaging and spectroscopy systems are presented. In the course, high power tunable continuous wave (CW) THz emitter and high sensitivity THz receiver platforms are presented. Those platforms can be realized with tunable optical beating source, broadband photomixer, arrayed photomixer and Schottky barrier diode, evanescently-coupled photodiodes with high saturation current, and semiconductor optical amplifier (SOA) integrated optical beating source. On the system level, our recent THz thickness measurement systems and the THz line scanner imaging system are presented.
A novel type of semiconductor beating source, a monolithically integrated dual-mode laser, and continuous-wave
terahertz (THz) system adopting it will be investigated. The combined system of the beating source with broadbandantenna-
integrated low-temperature-grown semiconductor photomixers shows the possibility of the realization of the
cost-effective and compact continuous-wave THz systems. Such a system is highly-demanded to examine the THz finger
prints of specimens without limitations. Since the optimized performance depends not only on the characteristics of
functional devices but also module configurations, various approaches such as traveling-wave photomixers, Schottky
barrier diodes, and nano-structure contained photomixers have been investigated to implement high-performance THz
platforms as the main building blocks of a THz system. Semiconductor-based compact and cost-effective photonics
technologies will envisage the bright future of THz systems.
We demonstrate the tunable continuous-wave (CW) terahertz generator based on the λ/4 phase-shifted 1.3 μm dual-mode laser diode (DML) and travelling-wave photodiode (TWPD). The DML and TWPD operate as an optical beat source and terahertz photomixer, respectively. The laser diodes (LDs) operating at the 1.3 μm have more suitable characteristics as optical beat sources than the LDs operating at 1.55 μm because of their high efficiency and better thermal stability. The micro-heaters are integrated on top of each DFB LD for mode beat frequency tuning. The fabricated DML was continuously tuned from 230 GHz to 1485 GHz by increasing the temperature of each DFB section independently via integrated micro-heaters. The high-speed TWPD with an InGaAs absorber was designed and fabricated to efficiently generate the photomixing terahertz CW. A complementary log-periodic antenna was integrated with the TWPD to radiate the generated terahertz wave with minimum reflection in the wide frequency range. The terahertz characteristics of the tunable CW terahertz generator based on the DML and TWPD were measured in a fiber-coupled, homodyne terahertz photomixing system. Our results of the tunable CW terahertz generator show the feasibility of a compact and highly efficient CW terahertz spectrometer and imager.
We demonstrate several optical beating sources based on 1.55 μm photonic devices. Broadband antenna-integrated,
low-temperature-grown (LTG) InGaAs photomixers for widely tunable continuous-wave THz generation and detection
are also verified. The novel optical beat sources show a beat frequency tuning range from 0.3THz to over 1.34 THz. The
dual-mode laser diode (DML) consists of one phase and two active sections. Micro-heaters are used to independently
tune the wavelengths of the two DML laser modes. Broadband antenna-integrated, LTG InGaAs photomixers are used as
THz wave generators and detectors. This use of 1.55 μm photonic devices could connect current THz and InP-based
communication technologies because the well-developed InP-based optoelectronic technologies are already expected to
enable the integration of tunable LD sources with other optical components such as semiconductor optical amplifiers
(SOAs), electro-absorption modulators, and waveguide-type THz photomixers. As well as realizing an optical fibercoupled
THz time-domain spectroscopy (TDS) system, we also successfully achieved continuous frequency tuning of the
CW THz emissions. Our results show that photomixing using the photonic devices is a promising approach to realize
compact, cost-effective, and portable THz spectrometer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.