The Pandora NASA Astrophysics Pioneers SmallSat mission employs a dual-channel observational approach, simultaneously utilizing visible photometry and infrared spectroscopy to assess stellar contamination of exoplanet transmission spectra. For the near-infrared spectroscopy Pandora will use a 2.5-micron cutoff Teledyne H2RG detector. The engineering design unit has undergone thermal-vacuum testing at Lawrence Livermore National Labs to characterize its performance under flight-like conditions. This paper provides an overview of testing conducted to date, shedding light on critical detector properties derived from subsequent analyses. Key parameters include read noise, gain, and saturation, offering insights into the detector’s capabilities and paving the way for enhanced data interpretation in the pursuit of unraveling the complexities within exoplanetary atmospheres.
Lance Simms, J. Jernigan, Benjamin Malphrus, Roger McNeil, Kevin Brown, Tyler Rose, Hyoung Lim, Steven Anderson, Jeffrey Kruth, John Doty, Matthew Wampler-Doty, Lynn Cominsky, Kamal Prasad, Eric Thomas, Michael Combs, Robert Kroll, Benjamin Cahall, Tyler Turba, Brandon Molton, Margaret Powell, Jonathan Fitzpatrick, Daniel Graves, Stephen Gaalema, Shunming Sun
A precise measurement of the Cosmic X-ray Background (CXB) is crucial for constraining models of the evolution and composition of the universe. While several large, expensive satellites have measured the CXB as a secondary mission, there is still disagreement about normalization of its spectrum. The Cosmic X-ray Background NanoSat (CXBN) is a small, low-cost satellite whose primary goal is to measure the CXB over its two-year lifetime. Benefiting from a low instrument-induced background due to its small mass and size, CXBN will use a novel, pixelated Cadmium Zinc Telluride (CZT) detector with energy resolution < 1 keV over the range 1-60 keV to measure the CXBN with unprecedented accuracy. This paper describes CXBN and its science payload, including the GEANT4 model that has been used to predict overall performance and the backgrounds from secondary particles in Low Earth Orbit. It also addresses the strategy for scanning the sky and calibrating the data, and presents the expected results over the two-year mission lifetime.
KEYWORDS: Satellites, Space telescopes, Sensors, Stars, Telescopes, Signal to noise ratio, Detection and tracking algorithms, Satellite imaging, Imaging systems, Global Positioning System
The Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) program will collect the information needed to help satellite operators avoid collisions in space by using a network of nanosatellites to determine more accurate trajectories for selected space objects orbiting the Earth. In the first phase of the STARE program, two pathfinder cube-satellites (CubeSats) equipped with an optical imaging payload are being developed and deployed to demonstrate the main elements of the STARE concept. We first give an overview of the STARE program. The details of the optical imaging payload for the STARE pathfinder CubeSats are then described, followed by a description of the track detection algorithm that will be used on the images it acquires. Finally, simulation results that highlight the effectiveness of the mission are presented.
KEYWORDS: Satellites, Sensors, Stars, Space telescopes, Signal to noise ratio, Image segmentation, Detection and tracking algorithms, Satellite imaging, Telescopes, Space operations
The Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) program will collect the information
needed to help satellite operators avoid collisions in space by using a network of nano-satellites to determine
more accurate trajectories for selected space objects orbiting the Earth. In the first phase of the STARE program,
two pathfinder cube-satellites (CubeSats) equipped with an optical imaging payload are being developed
and deployed to demonstrate the main elements of the STARE concept. In this paper, we first give an overview
of the STARE program. We then describe the details of the optical imaging payload for the STARE pathfinder
CubeSats, including the optical design and the sensor characterization. Finally, we discuss the track detection
algorithm that will be used on the images acquired by the payload.
KEYWORDS: Telescopes, Radon, Information operations, Sensors, Space telescopes, Astronomy, Astronomical imaging, Current controlled current source, Denoising, Stars
We report on long exposure results obtained with a Teledyne HyViSI H2RG detector operating in guide mode. The sensor simultaneously obtained nearly seeing-limited data while also guiding the Kitt Peak 2.1 m telescope. Results from unguided and guided operation are presented and used to place lower limits on flux/fluence values for accurate centroid measurements. We also report on significant noise reduction obtained in recent laboratory measurements that should further improve guiding capability with higher magnitude stars.
We present the first astronomical results from a 4K2 Hybrid Visible Silicon PIN array detector (HyViSI) read out
with the Teledyne Scientific and Imaging SIDECAR ASIC. These results include observations of astronomical
standards and photometric measurements using the 2.1m KPNO telescope. We also report results from a test
program in the Rochester Imaging Detector Laboratory (RIDL), including: read noise, dark current, linearity,
gain, well depth, quantum efficiency, and substrate voltage effects. Lastly, we highlight results from operation of
the detector in window read out mode and discuss its potential role for focusing, image correction, and use as a
telescope guide camera.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.