Perovskite solar cells have been widely used because of their high photoelectric conversion efficiency. It has been shown that the light-trapping structure can enhance absorption and reduce the additional light energy loss. Therefore, we propose a feasible method to construct pit array texture structures at the top and bottom of the glass respectively, and deposit solar cell materials on the substrate in turn. The primary mechanism of absorption enhancement of three different texture cells is simulated by the finite difference time domain method, and their limit efficiency is calculated and compared with planar devices. The results show that the perovskite solar cell with a double-sided textured structure has better anti-reflection and light capture characteristics. The light absorption is significantly improved in the 300-800 nm wavelength range. Compared with planar perovskite solar cells, the reflection is reduced by about 55% and the ultimate efficiency is increased by more than 8%. The textured structure can be used in various solar cell devices to improve cell performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.