Ultrasound imaging is a well established technology for echocardiography on humans. For cardiac imaging in small animals whose hearts beat at a rate higher than 300 beats per minute, the spatial and temporal resolution of current clinical ultrasonic scanners are far from ideal and simply inadequate for such applications. In this research, a real-time high frequency ultrasound imaging system was developed with a frame rate higher than 80 frames per second (fps) for cardiac applications in small animals. The device has a mechanical sector scanner using magnetic drive mechanism to reduce moving parts and ensure longevity. A very lightweight (< 0.28 g) single element transducer was specially designed and constructed for this research to achieve a frame rate of at least 80 fps. The 30-50 MHz transducers swept through an arc at the end of a pendulum for imaging the heart of small animals. The imaging electronics consisted of a low noise pulser/receiver, a high-speed data acquisition board, and digital signal processing algorithms. In vivo results on mouse embryos showed that real time ultrasound imaging at frame rate exceeding 80 fps could demonstrate detailed depiction of cardiac function with a spatial resolution of around 50 microns, which allows researchers to fully examine and monitor small animal cardiac functions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.