Cathodoluminescence and electrostatic techniques were used to study the nanoscale spatial evolution of native defects, crystallinity and work function in Ga2O3 across different morphological regions in laser induced periodic surface structures generated by an ultrafast laser. An emergent ~2.4 eV emission, likely related to oxygen interstitials or divacancy complexes, inversely correlates with the crystallinity of these regions. A contrast in work functions between the rims and troughs of the LIPSS, indicative of periodic differences in defect concentration, correlates with a reduction of crystallinity in the rim region relative to the trough region, suggesting an increased concentration of relatively shallow defects.
Short-wavelength UV light is strongly absorbed by most materials, creating the opportunity to drive near-surface thermal or chemical processes. The resulting modifications have a wide range of prospective applications, but few have been developed because of the low capacity and high unit cost of light from present sources. We analyze the light source requirements for large-scale applications to polymers and metals. We describe meeting them with free electron laser whose design is described in a companion paper in this session. This machine will deliver 1.0 to 2.5 kW between 190 nm and 350 nm with options in the visible and IR, and serve to further develop FEL technology for much higher powered machines. We gratefully acknowledge support for this work from the Commonwealth of Virginia Center for Innovative Technologies and The U.S. Department of Energy.
Since the 1990 discovery that porous silicon emits bright photoluminescence in the red part of the spectrum, light-emitting devices (LEDs) made of light-emitting porous silicon (LEPSi) have been demonstrated, which could be used for optical displays, sensors or optical interconnects. In this paper, we discuss our work on the optical properties of LEPSi and progress towards commercial devices. LEPSi photoluminesces not only in the red- orange, but also throughout the entire visible spectrum, from the blue to the deep red, and in the infrared, well past 1.5 micrometers . The intense blue and infrared emissions are possible only after treatments such as high temperature oxidation or low temperature vacuum annealing. These new bands have quite different properties form the usual red-orange band and their possible origins are discussed. Different LED structures are then presented and compared and the prospects for commercial devices are examined.
Proceedings Volume Editor (1)
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.