Thin-film aluminum filters degrade in space with significant reduction of their Extreme Ultraviolet (EUV) transmission. This degradation was observed on the EUV Spectrophotometer (ESP) onboard the Solar Dynamics Observatory’s EUV Variability Experiment and the Solar EUV Monitor (SEM) onboard the Solar and Heliospheric Observatory. One of the possible causes for deterioration of such filters over time is contamination of their surfaces from plumes coming from periodic firing of their satellite’s Monomethylhydrazine (MMH) – Nitrogen Tetroxide (NTO) thrusters. When adsorbed by the filters, the contaminant molecules are exposed to solar irradiance and could lead to two possible compositions. First, they could get polymerized leading to a permanent hydrocarbon layer buildup on the filter’s surface. Second, they could accelerate and increase the depth of oxidation into filter’s bulk aluminum material. To study the phenomena we experimentally replicate contamination of such filters in a simulated environment by MMH-NTO plumes. We apply, Scanning Electron Microscopy and X-Ray photoelectron spectroscopy to characterize the physical and the chemical changes on these contaminated sample filter surfaces. In addition, we present our first analysis of the effects of additional protective layer coatings based on self-assembled carbon monolayers for aluminum filters. This coverage is expected to significantly decrease their susceptibility to contamination and reduce the overall degradation of filter-based EUV instruments over their mission life.
KEYWORDS: Scanning electron microscopy, Extreme ultraviolet, Calibration, Solar processes, Rockets, Sensors, Data modeling, Ionization, Solar energy, Aerospace engineering
The SOHO/CELIAS Solar EUV Monitor (SEM) has measured absolute extreme ultraviolet (EUV) solar irradiance
nearly continuously over a 15 year period that includes two solar cycle minima, 22/23 (1996) and 23/24 (2008).
Calibration of the SEM flight instrument and verification of the data have been maintained through measurements from a
series of sounding rocket calibration underflights that have included a NIST calibrated SEM clone instrument as well as
a Rare Gas Ionization Cell (RGIC) absolute detector. From the beginning of SEM data collection in 1996, the SOLERS
22 fixed reference solar spectrum has been used to calculate absolute EUV flux values from SEM raw data. Specifically,
the reference spectrum provides a set of weighting factors for determining a weighted average for the wavelength
dependent SEM response. The spectrum is used for calculation of the second order contamination in the first order
channel signals, and for the comparison between SEM flux measurements with broader-band absolute RGIC
measurements. SOHO/SEM EUV flux measurements for different levels of solar activity will be presented to show how
the choice of reference spectra now available affects these SEM data. Both fixed (i.e. SOLERS 22) and non-fixed (Solar
Irradiance Platform/Solar 2000 and SDO/EVE/MEGS) reference spectra have been included in this analysis.
The Solar Dynamics Observatory (SDO) Extreme ultraviolet Spectro-Photometer (ESP), as a part of the Extreme
ultraviolet Variability Experiment (EVE) suite of instruments, was calibrated at the National Institute
of Standards and Technology (NIST) on the Synchrotron Ultraviolet Radiation Facility (SURF) Beam Line 2
in February 2007. Precise ESP alignment to the SURF beam was achieved through successive scans in X, Y,
Pitch and Yaw, using a comparison of the four channels of the ESP quad photodiode as a measure of alignment.
The observed alignment between the ESP and the other instruments in the EVE package was found to be in
very good agreement with that measured at the Laboratory for Atmospheric and Space Physics (LASP) at the
University of Colorado during ESP/EVE integration. The radiometric calibration of the ESP photometers in
the spectral range around 4.4 nm (central zeroth order), and the four first order channels centered at about
18.9, 25.4, 29.8, and 36.1 nm was performed with SURF synchrotron radiation. The co-alignment of the SURF
beam and the ESP optical axis for each energy and injected current was determined based on quad diode (QD)
photometer responses (photodiode count-rate data). This determined beam position was later used to obtain
exact energy-wavelength-flux profiles for each of the calibration energies and to calculate the quantum efficiency
of the ESP channels. The results of this calibration (quantum efficiencies) are compared to the previous ESP
NIST calibration results at SURF Beam Line 9 and to SOHO/SEM efficiencies.
We report the design and laboratory testing of a prototype dual-grating filter-free extreme ultraviolet (EUV)
spectrometer that has potential as a highly stable instrument for measuring absolute solar irradiance in the X-ray through
far ultraviolet spectral range. The instrument is based on the same freestanding transmission gratings and silicon
photodiodes used on the successful Solar EUV Monitor (SEM) aboard SOHO and the EUV Spectrophotometer (ESP)
part of the EVE instrument suite to be flown on SDO. Its two gratings, placed in series, along with a simple baffle
structure provide excellent out of band "white" light rejection. Because the instrument does not use any thin film filters
or reflective optics it is not susceptible to the degradation and instability associated with such optical elements. We
present photometric efficiency data from laboratory tests with a Helium and Hydrogen discharge light source and
measurements of "white" light rejection taken using the Mt Wilson Observatory 60' solar telescope.
We present a simple EUV spectrometer based on chemically inert rare gas photon ionization and energy analysis
of the resulting electrons. Precise photoelectron focusing and high electron transmission efficiency from the gas
ionization area to the detector are combined with an optimum luminosity angle of 90 deg in an axi-symmetric
design. All together, these features will allow us to achieve higher efficiency and spectral resolution than other
spectrometers of this type reported to date. The modeled (neon) spectral resolution in the spectral range of 5 -
40 nm is 0.1 - 0.035 nm, respectively. A model of the proposed photoelectron focusing system is analyzed.
KEYWORDS: Extreme ultraviolet, Spectral resolution, Spectroscopy, Electrodes, Ionization, Signal to noise ratio, Rockets, Electron beams, Sensors, Iron
A computer model of an Extreme Ultraviolet (EUV) spectrometer based on a gas ionization chamber and on flight experience of the Optics Free Spectrometer (OFS previously flown), was built and tested with the SIMulation of IONs (SIMION) tools. Our goal in this work was to design an improved and simplified electron beam focusing system which fits the dimensions (D = 180 mm; L = 380 mm) available for installation of a new OFS instrument in our sounding rocket flights, and to lower the focusing potentials from the 5,000 V in the previous OFS computer model to about 300 V in the current model.
The advanced EUV OFS employs a six-electrode electron beam focusing system with focusing potentials of up to 250 V and can focus photo-electrons in a spectral range of 5.0 - 50.0 nm. The spectral resolution may be optimized throughout the whole spectral range by switching to an appropriate set of focusing potentials resulting in a resolution of about 0.10 - 0.25 nm, which is comparable to or better than the spectral resolution of typical EUV grating spectrometers designed for spaceflight applications.
Modeled focusing of photo-electrons at the detector's aperture permits an increase in both spectral resolution and Signal to Noise Ratio (SNR) compared to those obtained with the dual-electrode OFS prototypes flown previously.
A comparison of measured OFS EUV spectra (sounding rocket flight of 2003/12/05) with the modeled spectra showed that an advanced OFS for studying solar dynamics in the EUV with high spectral and temporal resolution is indeed quite feasible.
A concept and preliminary design of an Extreme Ultraviolet (EUV)
spectrometer is presented. The spectrometer is based on a gas
ionization chamber and an advanced eight-electrode electron focusing
system to form a narrow electron beam on a photodiode aperture. The
design is modeled with the SIMulation of IONs (SIMION) tools and
shows the ability to scan through the spectral range of 20.0 - 40.6 nm by changing the potential on a single control electrode
between about 200 and 1100 V. The spectral resolution is about
0.25 nm in the middle of the band. The set of the focusing potentials may be changed to allow detection of solar EUV radiation in a wider spectral band, e.g. 5.0 - 50.0 nm. The potentials may be also optimized to improve the spectral resolution in a required spectral window.
The National Solar Observatory and the New Jersey Institute of Technology have developed two 97 actuator solar adaptive optics (AO) systems based on a correlating Shack-Hartmann wavefront sensor approach. The first engineering run was successfully completed at the Dunn Solar Telescope (DST) at Sacramento Peak, New Mexico in December 2002. The first of two systems is now operational at Sacramento Peak. The second system will be deployed at the Big Bear Solar Observatory by the end of 2003. The correlating Shack-Hartmann wavefront sensor is able to measure wavefront aberrations for low-contrast, extended and time-varying objects, such as solar granulation. The 97-actuator solar AO system operates at a loop update rate of 2.5 kHz and achieves a closed loop bandwidth (0dB crossover error rejection) of about 130 Hz. The AO system is capable of correcting atmospheric seeing at visible wavelengths during median seeing conditions at both the NSO/Sacramento Peak site and the Big Bear Solar Observatory. We present an overview of the system design. The servo loop was successfully closed and first AO corrected images were recorded. We present first results from the new, high order AO system.
An optical design for a modern off-axis 1.6 m clear aperture solar telescope - the NST (New Solar Telescope) is presented. The NST will replace the 65 cm vacuum telescope at Big Bear Solar Observatory (BBSO)in 2006. A high-order Adaptive optics (AO) system will deliver light to the current and planned complement of BBSO instrumentation. The NST will fully utilize the optical and dynamical range advantages
of its unobstructed (off-axis) pupil.
We present a high-order adaptive optical system for the 26-inch vacuum solar telescope of Big Bear Solar Observatory. A small elliptical tip/tilt mirror is installed at the end of the existing coude optical path on the fast two-axis tip/tilt platform with its resonant frequency around 3.3 kHz. A 77 mm diameter deformable mirror with 76 subapertures as well as wave-front sensors (correlation tracker and Shack-Hartman) and scientific channels for visible and IR polarimetry are installed on an optical table. The correlation tracker sensor can detect differences at 2 kHz between a 32×32 reference frame and real time frames. The WFS channel detects 2.5 kHz (in binned mode) high-order wave-front atmosphere aberrations to improve solar images for two imaging magnetographs based on Fabry-Perot etalons in telecentric configurations. The imaging magnetograph channels may work simultaneously in a visible and IR spectral windows with FOVs of about 180×180 arc sec, spatial resolution of about 0.2 arc sec/pixel and SNR of about 400 and 600 accordingly for 0.25 sec integration time.
The InfraRed Imaging Magnetograph (IRIM) is an innovative magnetograph system for near-infrared (NIR)observations of the Sun. IRIM will provide high spatial resolution (0.2" per pixel image scale), high temporal resolution (1-2 minutes), moderate spectral resolution (14.0 pm), and high magnetic sensitivity covering a substantial field-of-view (FOV: 170" circular). The bandpass of the instrument is reduced in three steps while still providing high transmission: (1) a 4 nm interference filter, (2) a 0.25 nm Lyot-filter, and (3) a 14.0 pm tunable Fabry-Perot etalon. The innovative NIR Lyot-filter was developed at the New Jersey Institute of Technology (NJIT) and is currently being assembled at Cambridge Research Instruments. It is the first of its kind and provides a large angle of acceptance, thus solving many problems encountered with dual Fabry-Perot systems. The two-dimensional line profiles will be recorded by a 1024 × 1024 pixel, 12-bit Complex Metal Oxide Semiconductor (CMOS) focal plane array (FPA) manufactured by Rockwell Scientific Imaging, which can obtain images at a rate of 50 fps. IRIM will utilize the remodelled Coude-feed of the 65 cm vacuum telescope at the Big Bear Solar Observatory (BBSO) and will benefit from an image stabilization and correction system of independently operating Correlation Tracking (CT) and Adaptive Optics (AO) systems.
The National Solar Observatory (NSO) and the New Jersey Institute of Technology are jointly developing high order solar Adaptive Optics (AO) to be deployed at both the Dunn Solar Telescope (DST) and the Big Bear Solar Telescope (BBST). These AO systems are expected to deliver first light at the end of 2003.
We discuss the AO optical designs for both the DST and the BBST. The requirements for the optical design of the AO system are as follows: the optics must deliver diffraction-limited imaging at visible and near infrared over a 190"×190" field of view. The focal plane image must be flat over the entire field of view to accommodate a long slit and fast spectrograph. The wave-front sensor must be able to lock on solar structure such as granulation. Finally, the cost for the optical system must fit the limited budget.
Additional design considerations are the desired high bandwidth for tip/tilt correction, which leads to a small, fast and off-the-shelf tilt-tip mirror system and high throughput, i.e., a minimal number of optical surfaces. In order to eliminate pupil image wander on the wave-front sensor, both the deformable mirror and tip-tilt mirror are located on the conjugation images of the telescope pupil.
We discuss the details of the optical design for the high order AO system, which will deliver high resolution image at the 0.39 - 1.6 μm wavelength range.
We present a progress report of the solar adaptive optics (AO) development program at the National Solar Observatory (NSO) and the Big Bear Solar Observatory (BBSO). Examples of diffraction-limited observations obtained with the NSO low-order solar adaptive optics system at the Dunn Solar Telescope (DST) are presented. The design of the high order adaptive optics systems that will be deployed at the DST and the BBSO is discussed. The high order systems will provide diffraction-limited observations of the Sun in median seeing conditions at both sites.
We describe our progress in the development of a software package to control a Fabry-Pérot interferometer (FPI) at the Big Bear Solar Observatory (BBSO). The FPI is a key part of our new Visible-Light Imaging Magnetograph (VIM). We describe the software libraries and methods that we use to develop the software. We also present specifications and characteristics of this new instrument.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.