KEYWORDS: Signal to noise ratio, Orthogonal frequency division multiplexing, Matrices, Pulse signals, Time metrology, Reflectometry, Modulation, Backscatter, Spatial resolution, Signal detection
In this paper an Optical Time Domain Reflectometer (OTDR) sensing method based on Orthogonal Frequency Division Multiplexing (OFDM) technology is proposed. In this system, the probe signal consist of multiple Simplex coded sequences which modulated onto different orthogonal sub-carriers. The signal-to-noise ratio (SNR) of the system can be improved by the coding gain of the Simplex codes. Meanwhile, different pulsed sequences can be sent into the fiber simultaneously, which solves the time-consuming problem of the traditional coded OTDR. In the Simplex coding OTDR distributed sensing system based on OFDM technology built by this method, compared with a 50 ns single pulse, the SNR of the fiber end of the 31-bit coding curve is improved by 4.42 dB, and the measurement time is reduced by 96.77% compared to traditional Simplex coding OTDR system.
A vector magnetic field sensor based on surface plasmon resonance (SPR) of a 15° tilted fiber Bragg grating (TFBG) and magnetic fluid is proposed and experimentally demonstrated. Both the orientation and the amplitude of the magnetic fields can be determined unambiguously via the wavelength and intensity monitoring of the SPR, which is essentially dominated by the arrayed Fe3O4 nanoparticles over the nanometric-film of fiber surface.
Distributed Bragg reflector (DBR) fiber optic laser has recently been extensively explored as a powerful sensor for various measurands, thanks to its high sensitivity, excellent signal-to-noise ratio, and inherent electronic magnetic immunity. The phase noise and linewidth of the laser’s beat note limits this sensor’s performances. We report in this letter, our recent experiments on noise reduction employing optical feedback from an external FBG. We also investigated the sensitivity reduction of the DBR sensor after feedback is introduced.
A fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser is demonstrated. The fiber grating laser produces two orthogonally polarized laser outputs with their frequency difference proportional to the intra-cavity birefringence. When the laser outputs are reflected from a moving targets, the laser frequencies will be shifted due to the Doppler effect. It shows that the frequency difference between the beat note of the laser outputs and the beat note of the reflected lasers is proportional to the velocity. The proposed fiber-optic Doppler velocimeter shows a high sensitivity of 0.64 MHz/m/s and is capable of measurement of wide range of velocity.
The beat frequency dependence of the sensitivity for a Faraday-rotation based heterodyning fiber laser magnetic field sensor is studied, which shows that lower beat frequency results in higher sensitivity. By lowering the beat frequency to 2 MHz, the maximum sensitivity of about 43 Hz/μT to magnetic field has been achieved for a heterodyning fiber laser inscribed on an Erbium doped fiber. It also shows that the beat frequency is dependent on the polarization of the 980 nm pump. Therefore, dynamical tuning of the sensitivity optically has also been demonstrated by tuning the polarization of the 980 nm pump.
A novel fiber-optic magnetic field sensor is proposed by embedding a heterodyning fiber laser into an epoxy resin bonded magnetostrictive composite material with Terfenol-D particles doped. The magnetic field induced strain in the magnetostrictive composite material is converted to transversal stress by a structure which is applied to the fiber laser to produce beat note frequency changes for measurement. The response of the proposed sensor is measured, which shows a quite good directivity with a sensitivity of 10.5 Hz/μT to magnetic field and a large measurable range up to about 0.3 T.
We demonstrate an accelerometer based on a dual-frequency DBR fiber laser with a resolution of 6 μg/Hz1/2 at 1 kHz. The accelerometer is implemented by mounting a 250-milligram proof mass onto the laser cavity and converting the vibration into change in beat frequency between the two orthogonal polarization lasing modes. Experimental result shows that the sensitivity reaches 1.7 MHz/g at 1 kHz with a working bandwidth over 1 kHz. The high resolution is also a result of the noise level as low as 10 Hz/Hz1/2 due to the compensation between the two lasing modes. The present accelerometer with extremely high resolution and light weight is promising for geophysical applications.
The noise performance of the beat note generated by a dual-polarization fiber grating laser is very critical for sensing applications. To reduce the noise of the beat note, external optical feedback is employed with a fiber Bragg grating as a reflector. It then shows that a longer feedback time results in larger noise reduction. With a 50 m single mode fiber as the delay line, more than 20 dB phase noise reduction has been achieved for a dual-polarization fiber grating laser which shows a phase noise of -92 dBc/Hz @ 10 kHz offset with external optical feedback applied.
We have proposed a novel magnetic field sensor based on orthogonally-polarized dual-frequency fiber laser and Faraday effect. In this paper, we propose a method to enhance the sensitivity of such Faraday effect based heterodyning fiber laser magnetic field sensor by tuning the intra-cavity intrinsic linear birefringence. We demonstrate that the sensitivity to magnetic field intensity is inversely proportional to the linear birefringence. A CO2-laser treatment is therefore proposed to tune the intra-cavity linear birefringence. With CO2-laser treatment to lower the intra-cavity linear birefringence, the sensitivities of heterodyning fiber laser sensors to magnetic field can be enhanced.
We demonstrate the ability of a fiber grating laser with dual-polarization, single-longitudinal-mode output to measure an extremely small mass (or transverse load). The minimum detectable mass is 0.28 milligram by reducing the noise level of the output beat signal.
A dual-polarization fiber grating laser is proposed to sense a magnetic field by attaching the fiber laser to a copper wire. When an electrical current is injected into the copper wire and a perpendicular magnetic field is applied, the current generates Ampere force to squeeze the fiber laser and change the birefringence inside the laser cavity, resulting in beat note frequency change. The magnetic field induced beat note frequency change can be discriminated from environment disturbances by applying an alternating current, which therefore demonstrates a novel miniature fiber-optic magnetic field sensor with high sensitivity and inherent immunity to disturbances.
In this paper, the output beat signal of the polarimetric heterodyning fiber grating laser sensor has been stabilized based on the investigation of polarization effect on the beat frequency. The short-term frequency fluctuation has been reduced from 1.5 MHz to about 0.1 MHz and the resolution of the sensors is greatly improved.
This paper gives an experimental study on Brillouin scattering property in an all solid photonics bandgap fiber (ASPBGF) using tapering technique. There are four Brillouin resonance peaks, one from the pure silica core and three from microstructure cladding of the AS-PBGF. We report Brillouin frequency shift and linewidth of the fiber. Because these four peaks show the different temperature and strain dependence, the simultaneous measurement of temperature and strain can be achieved.
A silicon steel sheet is proposed in this paper to work as a magnetic field concentrator to enhance the sensitivity of a Faraday effect based magnetic field sensor using a dual-polarization fiber grating laser. When the silicon steel sheet is placed close to the cavity of the fiber grating laser, the magnetic field is concentrated around the silicon steel sheet and hence the fiber grating laser experience stronger magnetic field than the case without the silicon steel sheet, which results in a larger magnetic field induced beat note frequency change after photodetection of the two orthogonally polarized laser outputs. With the same axial magnetic field, the experiment results confirm that the sensitivity of the sensor with a silicon steel sheet is improved over the one without a silicon steel sheet, which validates our proposal.
The Brillouin scattering spectrum of a photonic crystal fiber was measured experimentally by core-offset splicing to a
single mode fiber. One main peak and five sub-peaks due to Brillouin scattering were identified and their frequency and
intensity dependences on strain and temperature were investigated in detail. Besides the frequency shift, the intensity of
the Brillouin scattering was also found to vary with strain and temperature changes. It is then expected to solve the
problem of cross sensitivity in the conventional single-mode fibers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.