We present a study investigating fluorescence lifetime signatures of normal tissues adjacent to tumors (NATs) in head and neck squamous cell carcinoma (HNSCC) using fluorescence lifetime imaging (FLIm). Label-free FLIm offers insight into the metabolic activity and extracellular matrix composition. Understanding the metabolic activity, tissue heterogeneity and tumor-associated alterations in these transition areas can enhance the accuracy of margin delineation. Initial results show that the fluorescence lifetime is gradually increasing from shorter to longer lifetimes with increasing distance from the cancer and with varying magnitudes of change being observed in the individual emission bands.
Stereotactic needle biopsy is a time-consuming and invasive procedure that often cannot accurately distinguish recurrent tumors from treatment effect in gliomas. We report an intraoperative multispectral fluorescence lifetime imaging (FLIm) system coupled with a custom-made fiber optic probe integrated with the stealth biopsy needle as an optical biopsy tool. FLIm parameters collected from 3 suspected recurrent glioma patients changed over the biopsy trajectory as the needle passed different brain areas. An SVM classifier validated using a leave-one-patient-out validation scheme could identify the lesions from the normal surrounding tissue with sensitivity=0.99, specificity=0.91, and accuracy=0.95.
The standard treatment for infiltrative gliomas is surgery to remove as much tumor tissue as possible without compromising neurological functions. Thus, real-time identification of infiltrative tumor tissue is necessary. Here a fluorescence lifetime imaging (FLIm) was used to distinguish between healthy brain and areas with different degrees of tumor cellularity as defined by histopathology. We conducted FLIm measurements and collected microbiopsies from tumor resection margins to identify the FLIm characteristics of tumor edges in cortex and white matter of low- and high-grade gliomas. Results from a 13-patient cohort indicate that FLIm identifies infiltrations of up to moderate tumor cellularity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.