PLATO (PLAnetary Transits and Oscillations of stars) is the ESA’s third medium-class mission (M3), adopted in 2017 under the Cosmic Vision 2015-2025 program after selection in 2014. Set for launch in 2026 from French Guiana’s Kourou, its primary goal is to discover and provide an initial bulk characterization of diverse exoplanets, including rocky ones, orbiting bright solar-type stars. Operating from a halo orbit around L2, 1.5 million km from Earth, PLATO’s Payload consists of 26 telescopes (24 normal, 2 fast) capturing images every 25 seconds and 2.5 seconds, respectively. These work in tandem with the AOCS (S/C Attitude and Orbit Control System). Each camera comprises four CCDs, yielding 20.3 MP images—81.4 MP per normal camera and 2.11 gigapixels overall. The onboard P/L Data Processing System (DPS) handles this huge data volume, employing Normal and Fast DPUs along with a single ICU. The ICU manages data compression, overseeing the P/L through a SpaceWire network. This paper provides a comprehensive overview of the Instrument Control Unit’s (ICU) status following the rigorous performance test conducted on the Engineering Model (EM) and its evolution during the development phases of the Engineering Qualification Model (EQM) and Proto-Flight Model (PFM). The content delineates the outcomes derived from the extensive performance test executed on the Engineering Model (EM), detailing the meticulous activities undertaken during the Assembly, Integration, and Verification (AIT/AIV) processes of the EQM. Additionally, it explains the status of the Proto-Flight Model (PFM), offering insights into its development path.
PLATO is an M-class mission (M3) of the European Space Agency (ESA) whose launch is scheduled in 2026. The main aim of the mission is the detection and characterization of terrestrial exoplanets orbiting around bright solar-type star. The payload consists of 26 small telescopes: 24 “normal" cameras and 2 “fast" cameras. The huge amount of data produced by the PLATO telescopes is acquired and processed on-board by the Data Processing System (DPS) made up by various processing electronic units. The DPS of the PLATO instrument comprises the Normal and Fast DPUs (Data Processing Units) and a single ICU (Instrument Control Unit), are data routed through a SpaceWire network. The topic of this paper is the description of the architecture of the ICU and its role within the DPS, the status of the Avionic Validation Model (AVM) testing at the end of the Unit Preliminary Design Review (UPDR) performed by ESA and the results of the test of the first engineering model.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.