Many remote sensing applications require high spatial resolution images, but the elevated cost of these images makes some studies unfeasible. Single-image super-resolution algorithms can improve the spatial resolution of a lowresolution image by recovering feature details learned from pairs of low-high resolution images. In this work, several configurations of ESRGAN, a state-of-the-art algorithm for image super-resolution, are tested. We make a comparison between several scenarios, with different modes of upsampling and channels involved. The best results are obtained training a model with RGB-IR channels and using progressive upsampling.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.