HARMONI has been conceived as a workhorse visible and near-infrared (0.47-2.45 microns) integral field spectrograph
for the European Extremely Large Telescope (E-ELT). It provides both seeing and diffraction limited observations at
several spectral resolutions (R= 4000, 10000, 20000). HARMONI can operate with almost any flavor of AO (e.g.
GLAO, LTAO, SCAO), and it is equipped with four spaxel scales (4, 10, 20 and 40 mas) thanks to which it can be
optimally configured for a wide variety of science programs, from ultra-sensitive observations of point sources to highangular
resolution spatially resolved studies of extended objects. In this paper we describe the expected performance of
the instrument as well as its scientific potential. We show some simulated observations for a selected science program,
and compare HARMONI with other ground and space based facilities, like VLT, ALMA, and JWST, commenting on
their synergies and complementarities.
MIRI is one of four instruments to be built for the James Webb Space Telescope. It provides imaging, coronography and
integral field spectroscopy over the 5-28.5um wavelength range. MIRI is the only instrument which is cooled to 7K by a
dedicated cooler, much lower than the passively cooled 40K of the rest of JWST, and consists of both an Optical System
and a Cooler System. This paper will describe the key features of the overall instrument design and then concentrate on
the status of the MIRI Optical System development. The flight model design and manufacture is complete, and final
assembly and test of the integrated instrument is now underway. Prior to integration, all of the major subassemblies have
undergone individual environmental qualification and performance tests and end-end testing of a flight representative
model has been carried out. The paper will provide an overview of results from this testing and describe the current
status of the flight model build and the plan for performance verification and ground calibration.
MIRI is the mid-IR instrument for the James Webb Space Telescope and provides imaging, coronography and integral
field spectroscopy over the 5-28μm wavelength range. MIRI is the only instrument which is cooled to 7K by a dedicated
cooler, much lower than the passively cooled 40K of the rest of JWST, which introduces unique challenges. The paper
will describe the key features of the overall instrument design. The flight model design of the MIRI Optical System is
completed, with hardware now in manufacture across Europe and the USA, while the MIRI Cooler System is at PDR
level development. A brief description of how the different development stages of the optical and cooling systems are
accommodated is provided, but the paper largely describes progress with the MIRI Optical System. We report the
current status of the development and provide an overview of the results from the qualification and test programme.
CanariCam is the facility mid-infrared (MIR) instrument for the Gran Telescopio Canarias (GTC), a 10.4m
telescope at the Observatorio del Roque de los Muchachos on La Palma. One of the science drivers for CanariCam is the study of active galactic nuclei (AGN). We will exploit the instrument's high sensitivity in imaging,
spectroscopy, and polarimetry modes to answer fundamental questions of AGN and their host galaxies. Dust in
the nucleus of an active galaxy reprocesses the intrinsic radiation of the central engine to emerge in the MIR.
Current work demonstrates that the hot dust immediately associated with the AGN, which blocks direct views of
the AGN from some lines of sight, is confined to small (parsec) scales. Thus, high spatial resolution is essential to
probe the "torus" of unified AGN models separate from the host galaxy. CanariCam provides a 0.08" pixel scale
for Nyquist sampling the diffraction-limited point spread function at 8μm, and narrow (0.2") spectroscopy slits
(with R=120-1300). New observations with the GTC/CanariCam will provide key constraints on the physical
conditions in the clumpy torus, and we will sensitively determine AGN obscuration as a function of nuclear
activity. We will therefore address the fueling process and its relationship to the torus, the interaction with the
host galaxy, and dust chemistry. These data will be essential preparation for the next generation of telescopes
that will observe the distant universe directly to explore galaxy and black hole formation and evolution, and the
GTC/CanariCam system uniquely provides multiple modes to probe AGN.
The MIRI is the mid-IR instrument for JWST and provides imaging, coronography and low and medium resolution spectroscopy over the 5-28μm band. In this paper we provide an overview of the key driving requirements and design status.
Luis Colina, Eva Diaz, A. Aricha, M. Alcacera, A. Balado, Javier Barandiaran, D. Barrado y Navascues, Tomas Belenguer, J. Blanco, I. Figueroa, G. Garcia, L. Gonzalez, R.L. Heredero, F. Herrada, Carlos Laviada Hernandez, M. March, M. Menendez, C. Pastor, Manuel Reina, A. Sanchez
The MIRI Telescope Simulator (MTS) is part of the Optical Ground Support System (OGSE) for the verification and calibration phase of the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI). The MTS will simulate the optical characteristics of the JWST output beam in an environment similar to the flight conditions. The different functionalities of the MTS are briefly described and its current design, including the illumination and imaging subsystems, is presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.