High-harmonics generation (HHG) in solids require high-energy few-cycle laser drivers at near- to mid-infrared wavelengths with excellent beam quality to reach fluences of ~1 TW/cm2. Along this line, soliton sources based on large mode area silica-core singlemode fibers produce ultrashort (70 fs) pulses at remote wavelengths with hundreds of nJ, thus providing a new platform for driving HHG in solids. In this communication, we explore the potential of such soliton-based fiber driver for HHG in thin-films of zinc oxide. The laser delivers 41 nJ 70 fs solitonic pulses at 1764 nm and drives harmonics generation up to H7.
The tailoring of the group velocity dispersion (GVD) of an optical fiber is critical in many applications, influence on the bandwidth of information transmission in optical communication systems, successful utilization of nonlinear optical properties in applications such as supercontinuum generation, wavelength conversion and harmonic generation via stimulated Raman scattering ...In this work, we propose a design of ultra-flattened photonic crystal fiber by changing the diameter of the air holes of the cladding rings. The geometry is composed of only four rings, hexagonal structure of air holes and silica as background of the solid core. As a result, we present structures with broadband flat normal dispersion on many wavelengths bands useful for several applications. We obtain flat normal dispersion over 1000 nm broadband flat normal dispersion below -7 [ps/nm.km], and ultra-flat near zero normal dispersion below -0.2 [ps/nm.km] over 150 nm. The modeled photonic crystal fiber would be valuable for the fabrication of ultra-flattened-dispersion fibers, and have potential applications in wide-band high-speed optical communication systems, supercontinuum generation and many other applications.
In this work, we design a highly nonlinear noncircular core photonic crystal fiber (HNL-PCF) for the generation of a supercontinuum (SC) at 1.3 μm having minimum anomalous dispersion and using many nonlinear effects by introducing self-phase modulation (SPM), self-steepening and Raman effects. The proposed geometry of the HNL-PCF is composed of six rings of air-holes and silica as a background material for the core. Using the vectorial Finite Element method (FEM) with a perfectly matched layer (PML), the proposed HNL-PCF is numerically modeled for determining its characteristics as Group Velocity Dispersion (GVD) and nonlinear properties. After optimizing the properties of the proposed HNL-PCF (GVD= - 0.95 ps2/km; γ= 55.45 [W.km]-1 around 1.3 μm), the SC is generated by solving the nonlinear Schrodinger equation (NLSE), that contains different parameters of the cited nonlinear effects, with split-step Fourier method (SSFM). The introducing of this different effects in our work allows to generate a SC of spectral bandwidth SBW=260 nm at 1,3 μm using only 1.89 mm long of PCF.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.