We propose functional surface treatment process and primers (FSTP). FSTP is a spin-coated ultra-thin material which forms approximately single molecular layer (~1nm) not to bother pattern etch transfer. Moreover, our newly developed FSTP showed lithographic performance enhancement of MOR (metal oxide resist), by having 20~30% dose reduction. Currently, we found that some FSTP has substrate dependency in MOR lithographic performance and optimization of functional unit was effective for solving this issue. Therefore, FSTP plays a important role in both EUVL performance and pattern etch transfer. This makes FSTP as one of the promising candidates for the next-generation High-NA EUV process.
EUV lithography has been desired as the leading technology for below Hp20nm. However, the source power, masks and resist materials still have critical issues for mass production. Especially in resist materials, RLS trade-off is the key issue. To overcome this issue, we are focusing on Organic & Inorganic Hard Mask as the bottom layer of EUV PR. Especially, Inorganic under layers (Si-HM) can perform not only as the lithographic performance enhancement layer for fine pitch, but also as the etching hard mask against bottom layer (spin on carbon : SOC). In this paper, we especially propose new approaches to achieve high resolution below hp16nm. The key points of our concepts are EUV-sensitive units of Si-HM. This new EUV sensitive Si-HM could resolve Hp14nm L/S pattern with wide DOF margin. It can also perform as the high universal materials in any development process (PTD & NTD) and any PR materials. Moreover, the latest Organic under layers developed for the advanced EUV CAR PR & Metal resist also will be discussed in the paper. From the Organic & Inorganic under layer material design, we will present new concepts to get high resolution in EUVL.
We developed the novel process and material which can be created reverse-tone pattern without any collapse. The process was Dry Development Rinse (DDR) process, and the material used in this process was DDR material. DDR material was containing siloxane polymer which could be replaced the space area of the photo resist pattern. And finally, the reverse-tone pattern could be obtained by dry etching process without any pattern collapse issue.
DDR process could be achieved fine line and space patterning below hp14nm without any pattern collapse by combination of PTD or NTD photo resist.
DDR materials were demonstrated with latest coater track at imec. DDR process was fully automated and good CD uniformity was achieved after dry development. Detailed evaluation could be achieved with whole wafer such a study of CD uniformity (CDU). CDU of DDR pattern was compared to pre-pattern’s CDU. Lower CDU was achieved and CDU healing was observed with special DDR material. By further evaluation, special DDR material showed relatively small E-slope compared to another DDR material. This small E-slope caused CDU improvement.
In the recent of the semiconductor manufacturing process, variety of properties (narrow gap-filling and planarity etc.) are required to organic BARC in addition to the conventional requirements. Moreover, SC-1 resistance is also needed because BARC is often used as a wet etching mask when TiN processing. But conventional BARC which include crosslinker doesn’t have enough SC-1 resistance, and we found that it is also difficult to obtain good gap-filling and good planarity because of outgassing and film shrinkage derived from the crosslinker. In this study, we have developed the new self-crosslinking BARC. The new crosslinking system shows low outgassing and film shrinkage because of not including crosslinker. So, novel BARC has better gap filling property and planarity and over 3 times higher SC-1 resistance than that of conventional BARC. Moreover, by adding the low molecular weight additive which has high adhesive unit to TiN surface, the novel BARC has over 10 times higher SC-1 resistance than that of conventional BARC. And this novel BARC can be applied both ArF and KrF lithography process because of broad absorbance, high etching rate, chemical resistance (SC-1, SC-2, DHF, and others) and good film thickness uniformity. In this paper, we will discuss the detail of new self-crosslinking BARC in excellent total performance and our approach to achieve high chemical resistance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.