The Gemini North Adaptive Optics (GNAO) facility is the upcoming AO facility for Gemini North providing a state-of-the-art AO system for surveys and time domain science in the era of JWST and Rubin operations.
GNAO will be optimized to feed the Gemini infrared Multi Object Spectrograph (GIRMOS). While GIRMOS is the primary science driver for defining the capabilities of GNAO, any instrument operating with an f/32 beam can be deployed using GNAO.
The GNAO project includes the development of a new laser guide star facility which will consist of four sidelaunched laser beams supporting the two primary AO modes of GNAO: a wide-field mode providing an improved image quality over natural seeing for a 2-arcminute circular field-of-view and a narrow-field mode providing near diffraction-limited performance over a 20 × 20 arcsecond square field-of-view. The GNAO wide field mode will enable GIRMOS’s multi-IFU configuration in which the science beam to each individual IFU will be additionally corrected using multi-object AO within GIRMOS. The GNAO narrow field mode will feed the GIRMOS tiled IFU configuration in which all IFUs are combined into a “super”-IFU in the center of the field.
GNAO also includes the development of a new Real Time Controller, a new GNAO Facility System Controller and finally the development of a new AO Bench. We present in this paper an overview of the GNAO facility and provide a status update of each product.The imaging requirement is almost met using the correlation algorithm to estimate the displacement of the spot, along with a high-order controller tailored to the telescope wind shake. This requires a sufficiently bright star to be able to run at 500 Hz, so the sky coverage is limited. In the absence of wind, then the star can be fainter and the requirement is met.
The spectroscopy requirement is met even in the case of high wind. The results are even better if we use the GLAO WFSs as well as the tip-tilt sensors. Further work will explore the viability of inserting a DM in the OIWFS and the resulting tip-tilt performance.
This paper describes the implementation of the algorithms, and the design and development of the prototype operational tools for automated PSF reconstruction. On-sky performance is discussed by comparing the reconstructed PSFs to the measured PSF’s on the NIRC2 science camera. The importance of knowing the control loop performance, accurate mapping of the telescope pupil to the deformable mirror and the science instrument pupil, and the telescope segment piston error are highlighted. We close by discussing lessons learned and near-term future plans.
View contact details