It is well known that the interaction between coherent monochromatic radiation and a scattering medium induce
a speckle phenomenon. The direct exposure of a photographic film, without a lens to the transmitted radiation,
gives speckle pattern. The main problem lies in the determination of parameters which can efficiently characterize
this pattern and can be correlated with the optical properties of the medium. In this paper, we present a circular
statistics approach to differentiate media.
In this paper, we propose a new approach of the speckle statistics in
backscattering imagery. Applicate the Brownian motion theory to the
speckle permit us to extract stochastic parameters to characterize it. It seems more powerful than the classical frequential approach to characterize and classify speckle. We present an test application of this method on a human skin.
It is well known that interactions between a coherent monochromatic radiation and a scattering media induce a speckle phenomenon. Spatial and temporal statistics of this speckle allow many applications in laser imaging. The main problem is the characterization of the backscattered media from the speckle pattern in biomedical imagery. In this paper, we present a stochastic approach based on Brownian motion theory in the approximation of the diffusion. Stochastic processes showing statistical scale law are, under some assumptions, called fractional Brownian motion (fBm) which is a generalization of ordinary Brownian motion (Bm) as defined by Mandelbrot and Van Ness. This extension is related to the existence of a long-range statistic dependence in the process. This dependence is quantified by the Hurst exponent H that is a 'scale factor' indicating the persistence (H>0.5), totally random (H=0.5) or the anti-persistence (H<0.5) nature of the process. Variogram analysis is a possible method to estimate the Hurst exponent. We applied this approach by estimation of the mean quadratic spatial difference, or diffusion function, for 2D analysis of speckle image. Hence, spatial speckle is characterize by extracting from diffusion function plot a set of three parameters; the Hurst exponent, the saturation of the variance and the characteristic element size. Applications of this method to characterization of test media are presented. We find that for all test media with different latex micro-ball concentrations (1%, 5% and 10%) the characteristic element size and the saturation of the variance discriminate media while Hurst exponent seems to be constant for all concentrations. This first results permit us to hope in application like skin lesion quantification in dermatology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.