The detection of rapid dynamics in diverse physical systems is traditionally very difficult and strongly dominated by several noise contributions. Laser mode-locking, electron bunches in accelerators, and optical-triggered phases in materials are events that carry important information about the system from which they emerge. By detecting single-shot spectra with high repetition rates over long-time scales, new possibilities and applications to diagnose, control and tailor the spectral dynamics of lasers and electron beams in synchrotron and free-electron laser (FEL) accelerators open up. This contribution focuses on the latest developments of real-time, single-shot, high-repetition-rate detectors and data acquisition systems, with a special focus on emerging technologies and new possibilities in the diagnostics of rogue optical signals.
In this paper, we present the long-term stable synchronization of the FLASH pump-probe Ti:sapphire oscillator to an optical reference with sub-10 fs (rms) timing jitter employing a balanced optical cross-correlator. The reference pulse train, transmitted over an actively transit time-stabilized 500m long fiber link, is generated by the FLASH master laser oscillator. This laser also provides the reference for several electron bunch arrival time monitors with sub-10 fs resolution, which in turn enables a longitudinal feedback reducing the electron bunch arrival time jitter to below 25 fs (rms). Combining the precise synchronization of the laser and the longitudinal accelerator feedback enabled a proof-of-principle pump-probe experiment at FLASH, ultimately showing a significant reduction of the timing jitter between the optical laser and the XUV pulses generated by the FEL, compared to the present standard operation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.