We will discuss optical imaging of the cells inside the cochlea. We will describe recent results for imaging the hair cells through an optically thinned section of the cochlea bone. A combination of optical coherence tomography, two photon fluorescence microscopy and femtosecond laser ablation is used.
We demonstrate multimode fiber probe that accomodates dual modality properties for high power ultrashort pulse delivery. A commercially available multimode graded-index (GRIN) fiber is used for two-photon imaging and/or femtosecond laser ablation of Cochlea hair cells. Lensless focusing and digital scanning of ultrashort pulses through the optical fiber is realized using the transmission matrix technique. We investigate the performance and the limitations of the GRIN probe in terms of focusing efficiency and peak power delivery. Selective laser ablation guided by the twophoton image obtained through the GRIN fiber is realized by proximally-only control of the femtosecond laser beam.
Inner ear imaging is important for the assessment of hearing disorders. A major cause of hearing loss is the damage to the sensory hair cells, which are located inside the cochlea, a spiral-shaped bone in the inner ear. Imaging of intracochear hair cells is of high interest because it can provide precise diagnosis and treatment of hearing loss. However, this goal is very challenging because the cochlea is very small and enclosed by a dense bone, thus preventing visualization of intracochlear microanatomy. In this paper, we present a novel technique for imaging cochlear cells through the bone by two-photon microscopy. We optimized the imaging quality by thinning the obscuring scattering bone above the hair cells using a femtosecond laser. We controlled the ablation with an optical coherence tomography system and a bright-field camera for real time visualization. The proposed method enables optical access to the cochlea by thinning the cochlear bone, thus allowing imaging of cells underneath.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.