Philippe Xu, Pawan Bhartia, Glen Jaross, Matthew DeLand, Jack Larsen, Albert Fleig, Daniel Kahn, Tong Zhu, Zhong Chen, Nick Gorkavyi, Jeremy Warner, Michael Linda, Hong Chen, Mark Kowitt, Michael Haken, Peter Hall
The OMPS Limb Profiler (LP) was launched on board the NASA Suomi National Polar-orbiting Partnership (SNPP) satellite in October 2011. OMPS-LP is a limb-scattering hyperspectral sensor that provides ozone profiling capability at 1.8 km vertical resolution from cloud top to 60 km altitude. The use of three parallel slits allows global coverage in approximately four days. We have recently completed a full reprocessing of all LP data products, designated as Release 2, that improves the accuracy and quality of these products. Level 1 gridded radiance (L1G) changes include intra-orbit and seasonal correction of variations in wavelength registration, revised static and intra-orbit tangent height adjustments, and simplified pixel selection from multiple images. Ozone profile retrieval changes include removal of the explicit aerosol correction, exclusion of channels contaminated by stratospheric OH emission, a revised instrument noise characterization, improved synthetic solar spectrum, improved pressure and temperature ancillary data, and a revised ozone climatology. Release 2 data products also include aerosol extinction coefficient profiles derived with the prelaunch retrieval algorithm. Our evaluation of OMPS LP Release 2 data quality is good. Zonal average ozone profile comparisons with Aura MLS data typically show good agreement, within 5-10% over the altitude range 20-50 km between 60°S and 60°N. The aerosol profiles agree well with concurrent satellite measurements such as CALIPSO and OSIRIS, and clearly detect exceptional events such as volcanic eruptions and the Chelyabinsk bolide in February 2013.
KEYWORDS: Sensors, Stray light, Signal to noise ratio, Ozone, Photons, Ultraviolet radiation, Sensor performance, Space operations, Knowledge management, Signal detection
Following the successful launch of the Ozone Mapping and Profiler Suite (OMPS) aboard the Suomi National Polar-orbiting
Partnership (NPP) spacecraft, the NASA OMPS Limb team began an evaluation of sensor and data product
performance in relation to the original goals for this instrument. Does the sensor design work as well as expected, and
can limb scatter measurements by NPP OMPS and successor instruments form the basis for accurate long-term
monitoring of ozone vertical profiles? While this paper does not address the latter question, the answer to the former is a
qualified Yes given this early stage of the mission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.