Diffraction-limited 976nm lasers can be used to core-pump ultrafast fiber lasers to overcome nonlinearities with significantly shortened fiber lengths or to pump ultrafast solid-state lasers for much improved beam quality. In order to make Yb fiber lasers operate efficiently as a three-level system at ~976nm, it is critical to use double-clad fibers with large core-to-cladding ratio and additional spectral filters, such as dichroic mirrors in free space or fiber Bragg gratings in all-fiber configurations, to suppress lasing at longer wavelengths. Diffraction-limited 94W at 976nm was achieved in 2008 with an efficiency of ~50% with respect to the launched pump powers at ~915nm using a rod-type PCF and multiple dichroic mirrors. However, the results from flexible fibers with the potential to be used for monolithic fiber lasers are far worse. In this work, the Yb-doped double-clad all-solid photonic bandgap fiber has a core diameter of ~25μm and a cladding diameter of ~125μm. The photonic bandgap was engineered to have its long wavelength band edge just beyond 976nm to suppress lasing at longer wavelengths. We demonstrate a record efficiency of ~54% with regard to the coupled pump power at ~915nm. Pump-limited 38W at ~977nm was achieved with a M2 of ~1.24. ASE at ~1026nm was suppressed by <30dB at all powers. This is possible due to the use of all-solid photonic bandgap fibers which provide both the necessary large core-to-cladding ratio and the additional suppression of the four-level system by strong out-of-band transmission loss.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.