Basal cell carcinoma (BCC) is the most common skin cancer worldwide. In the diagnosis process million benign biopsies are performed annually, increasing morbidity and healthcare costs. Noninvasive in vivo technologies such as multiphoton microscopy (MPM) can reduce biopsies. We explored the potential of MPM to differentiate collagen changes associated with BCC and surrounding normal skin structures using quantitative analysis (Fast Fourier transformation and Integrated optical density using ImageJ software, and its CurveAlign and CT-FIRE fiber analysis plugins) on second harmonic generation images. Our results showed that collagen distribution is more aligned surrounding BCCs when compared to the skin normal structures, showing the feasibility of detecting BCC in a quantitative way. Our initial results are limited to a small number of samples therefore, large-scale studies are needed to validate these collagen analysis methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.