Acoustic emissions (AEs) are elastic stress waves in solids. They occur when irreversible changes take place in the internal structure (e. g. the formation of cracks) of a solid (material). The benefits of the measurement of AEs are well known, and their application has already been described for various use cases. They are, for example, used for monitoring bridges to detect rope cracks. We want to investigate the possibilities of using AEs in the polishing process of glass, a complicated manufacturing process with several overlapping, chemical and mechanical influences. We will present the results of preliminary studies which shall answer the following questions:
• Is it possible to measure acoustic emission signals, even if an unhindered access to the place of origin under manufacturing situations can not be guaranteed?
• How is the development of the signal during the polishing process? • How can acoustic emissions be used in the future to improve optics manufacturing?
• Is the opportunity of an endpoint detection existing?
Answering these questions will demonstrate the abilities AEs can offer for evaluating and monitoring manufacturing processes. In the future it should be possible to create a cyber-physical system (CPS). In such a system, AE signals can be merged with other sensor signals (e. g. power of the machine, pH value, · · ·).
The full aperture polishing process is a very important step in manufacturing precision optics. For this the brittle glass workpiece needs to be mounted to a specific holder in order to install the lens in the polishing machine. One very common way is to use a precision holder which is machined to the exact diameter of the lens. This precision holder is mostly made from aluminium which leads to inherent difficulties in the combination with the workpiece. The brittle glass on the hard holder surface tends to chip at the corners when not handled carefully. Also, the friction between aluminium and glass is relatively small which may lead to a relative motion in the holder and therefore scratching of the surface. Another aspect is that for each lens diameter a holder must be manufactured. Therefore, more time is needed for the preparation for the process and the efficiency of the optician’s shop decreases. At the TC-Teisnach Optik, we use a commercially available, low-priced 3D Printer in order to manufacture an additional flexible part between lens and holder. This solves the problems which stem from the encounter between two hard surfaces. The friction between holder and lens is increased and the handling is simplified, since the flexible part reduces the risk of edge chipping. Additionally, this brings the possibility to use one aluminium holder for a variety of lens diameters by exchanging the 3D printed part. With this technology a 3D printer with flexible filament acts as a useful extension of an opticians’ shop and can improve the efficiency.
The aim of the research was the development of a measurement and analysis method that enables the detection of errors and malfunctions within a machine tools and in the manufacturing process using acoustic sensors (microphones).
Optics and photonics are considered as an enabling technology for innovations in other technological fields (e. g. astronomy, medicine, military, …). Their first applications date back to jewellery processing in ancient times. In the medieval age Vikings on Gotland (1050) buried the Visby lenses. They have a quality of workmanship and imaging comparable to a high quality lens made in the mid-20th century. The specific use of spectacles to correct long-sightedness or presbyopia is known from the 13th century. Around the transition from the 16th to the 17th century, the microscope and the telescope were invented, combining several lenses for the first time. This shows that the exploitation of the optical properties of materials can be dated back very early in human history. In particularly, today`s optics industry is still based on personal knowledge which results in a relatively workmanship production environment. The challenges of globalisation and the current pandemic situation demonstrate that increasing the degree of automation is a possible way to keep a leading position in the market. This is not only important due to the high quality of optical components but also by enabling competitive prices for production through reducing the labour costs. The third industrial revolution established the digitalisation of production and the usage of CNC-machinery. In most industries including optics industries this is the status quo of production. The target of industry 4.0 and internet of things is to lead into a new industrial revolution. The German government developed the buzzword “Industrie 4.0” (eng. Industry 4.01 ). This concept includes the contradiction of mass production and production according to individual customer requests. This should be carried out by connecting all production units with the goal of an intelligent factory. Among other things this includes seamless monitoring of the manufacturing processes along all steps and remote access to involved machines. A further target is manufacturing under the constraint of a small batch size down to one piece. This publication aims to present the current situation in the manufacturing of optical components and compare this with manufacturing of metallic components. It will outline, which measures are necessary to ensure a comprehensive transformation of the optical industry in accordance with the Industry 4.0 idea and which benefits can be expected.
Pressure is a relevant parameter in the polishing of components according to the Preston equation.1, 2 Preliminary investigations have shown that the pressure can vary with inclined position and different polishing pads. It is not constant with regard to its distribution in the contact area between polishing pad and glass surface. In this publication, the pressure distribution during the polishing of glass components is analyzed. For the measurement of the pressure distribution a pressure sensitive foil is used.
The present paper shows a way for a cost-effective, integrated measurement of the density p of polishing suspensions. It is based on the principle of measuring the turbidity of a solution on the basis of the light transmitted through it, and of calculating back to the density on the basis of the turbidity. The tool is suitable for monitoring polishing agents and for detecting when the density of the polishing slurry leaves the permissible parameter space and can perspectively enable the automated monitoring and adjustment of polishing suspensions. The tool is named after an Octopus. These animals have amazing abilities, for example they can copy the behaviour of other sea animals or act with a plan. Their tentacles each have their own brain and can perform biochemical analyses.
The Preston-equation implies, that, besides the relative speed υrel and a specific constant KP, the pressure p plays a significant role for the removal rate when polishing an optical component. This paper demonstrates a possibility for a qualitative evaluation of the pressure distribution before the polishing process. A pressure-sensitive foil is used as a gauge for pressure measurement. The effectiveness of this measuring method is explained. Specific weaknesses and limitations in the use of these foils are discussed. A method for an integrated evaluation of the pressure on different spots of the polishing pad is proposed at the end of the paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.