In recent years, the importance of spectral CT scanners in clinical settings has significantly increased, necessitating the development of phantoms with spectral capabilities. This study introduces a dual-filament 3D printing technique for the fabrication of multi-material phantoms suitable for spectral CT, focusing particularly on creating realistic phantoms with orthopedic implants to mimic metal artifacts. Previously, we developed PixelPrint for creating patient-specific lung phantoms that accurately replicate lung properties through precise attenuation profiles and textures. This research extends PixelPrint's utility by incorporating a dual-filament printing approach, which merges materials such as calcium-doped Polylactic Acid (PLA) and metal-doped PLA, to emulate both soft tissue and bone, as well as orthopedic implants. The PixelPrint dual-filament technique utilizes an interleaved approach for material usage, whereby alternating lines of calcium-doped and metal-doped PLA are laid down. The development of specialized filament extruders and deposition mechanisms in this study allows for controlled layering of materials. The effectiveness of this technique was evaluated using various phantom types, including one with a dual filament orthopedic implant and another based on a human knee CT scan with a medical implant. Spectral CT scanner results demonstrated a high degree of similarity between the phantoms and the original patient scans in terms of texture, density, and the creation of realistic metal artifacts. The PixelPrint technology's ability to produce multi-material, lifelike phantoms present new opportunities for evaluating and developing metal artifact reduction (MAR) algorithms and strategies.
Imaging is often a first-line method for diagnostics and treatment. Radiological workflows increasingly mine medical images for quantifiable features. Variability in device/vendor, acquisition protocol, data processing, etc., can dramatically affect quantitative measures, including radiomics. We recently developed a method (PixelPrint) for 3D-printing lifelike computed tomography (CT) lung phantoms, paving the way for future diagnostic imaging standardization. PixelPrint generates phantoms with accurate attenuation profiles and textures by directly translating clinical images into printer instructions that control density on a voxel-by-voxel basis. The present study introduces a library of 3D printed lung phantoms covering a wide range of lung diseases, including usual interstitial pneumonia with advanced fibrosis, chronic hypersensitivity pneumonitis, secondary tuberculosis, cystic fibrosis, Kaposi sarcoma, and pulmonary edema. CT images of the patient-based phantom are qualitatively comparable to original CT images, both in texture, resolution and contrast levels allowing for clear visualization of even subtle imaging abnormalities. The variety of cases chosen for printing include both benign and malignant pathology causing a variety of alveolar and advanced interstitial abnormalities, both clearly visualized on the phantoms. A comparison of regions of interest revealed differences in attenuation below 6 HU. Identical features on the patient and the phantom have a high degree of geometrical correlation, with differences smaller than the intrinsic spatial resolution of the scans. Using PixelPrint, it is possible to generate CT phantoms that accurately represent different pulmonary diseases and their characteristic imaging features.
The performance of a CT scanner for detectability tasks is difficult to precisely measure. Metrics such as contrast-to-noise ratio, modulation transfer function, and noise power spectrum do not predict detectability in the context of nonlinear reconstruction. We propose to measure detectability using a dense search challenge: a phantom is embedded with hundreds of target objects at random locations, and a human or numerical observer analyzes the reconstruction and reports on suspected locations of all target objects. The reported locations are compared to ground truth to produce a figure of merit, such as area under the curve (AUC), that is sensitive to the acquisition dose and the dose efficiency of the CT scanner. We used simulations to design such a dense search challenge phantom and found that detectability could be measured with precision better than 5%. Test 3D prints using the PixelPrint technique showed the feasibility of this technique.
Patient-based CT phantoms, with realistic image texture and densities, are essential tools for assessing and verifying CT performance in clinical practice. This study extends our previously presented 3D printing solution (PixelPrint) to patient-based phantoms with soft tissue and bone structures. To expand the Hounsfield Unit (HUs) range, we utilize a stone-based filament. Applying PixelPrint, we converted patient DICOM images directly into FDM printer instructions (G-code). Density was modeled as the ratio of filament to voxel volume to emulate attenuation profiles for each voxel, with the filament ratio controlled through continuous modification of the printing speed. Two different phantoms were designed to demonstrate the high reproducibility of our approach with micro-CT acquisitions, and to determine the mapping between filament line widths and HU values on a clinical CT system. Moreover, a third phantom based on a clinical cervical spine scan was manufactured and scanned with a clinical spectral CT scanner. CT image of the patient-based phantom closely resembles the original CT image both in texture and contrast levels. Measured differences between patient and phantom are around 10 HU for bone marrow voxels and around 150 HU for cortical bone. In addition, stone-based filament can accurately represent boney tissue structures across the different x-ray energies, as measured by spectral CT. This study demonstrates the feasibility of our 3D-printed patient-based phantoms to be extended to soft-tissue and bone structure while maintaining accurate organ geometry, image texture, and attenuation profiles for spectral CT.
The impact of the angular range in conventional DBT is a trade-off in image quality; increasing angular range improves in-depth resolution and isotropic sampling across the detector, but compromises in-plane resolution. Our next generation tomosynthesis (NGT) system is capable of two-dimensional source trajectory and incorporates narrow- and wide-angle acquisition in orthogonal directions for a single tomosynthesis scan. In this work, performance of NGT geometries for high- and low-frequency objects across the detector was evaluated via computer simulations. We showed that NGT geometries preserve high in-plane resolution and present highly isotropic sampling, thus combine the benefits of narrow- and wide-angle tomosynthesis.
KEYWORDS: Computed tomography, Lung, Printing, Signal attenuation, Image segmentation, 3D printing, 3D modeling, Spatial resolution, 3D image processing, Manufacturing
Phantoms are essential tools for assessing and verifying performance in computed tomography (CT). Realistic patientbased lung phantoms that accurately represent textures and densities are essential in developing and evaluating novel CT hardware and software. This study introduces PixelPrint, a 3D-printing solution to create patient-specific lung phantoms with accurate contrast and textures. PixelPrint converts patient images directly into printer instructions, where density is modeled as the ratio of filament to voxel volume to emulate local attenuation values. For evaluation of PixelPrint, phantoms based on four COVID-19 pneumonia patients were manufactured and scanned with the original (clinical) CT scanners and protocols. Density and geometrical accuracies between phantom and patient images were evaluated for various anatomical features in the lung, and a radiomic feature comparison was performed for mild, moderate, and severe COVID-19 pneumonia patient-based phantoms. Qualitatively, CT images of the patient-based phantoms closely resemble the original CT images, both in texture and contrast levels, with clearly visible vascular and parenchymal structures. Regions-ofinterest (ROIs) comparing attenuation demonstrated differences below 15 HU. Manual size measurements performed by an experienced thoracic radiologist revealed a high degree of geometrical correlation between identical patient and phantom features, with differences smaller than the intrinsic spatial resolution of the images. Radiomic feature analysis revealed high correspondence, with correlations of 0.95-0.99 between patient and phantom images. Our study demonstrates the feasibility of 3D-printed patient-based lung phantoms with accurate geometry, texture, and contrast that will enable protocol optimization, CT research and development advancements, and generation of ground-truth datasets for radiomic evaluations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.