Photonic modes in 1-D and 2-D silicon-on-insulator photonic
crystal waveguides periodic or containing line-defects, are fully
explored by means of angle- and polarization-resolved
micro-reflectance measurements. Both quasi-guided and truly guided
photonic modes are probed with a frequency-wave vector range that
is greatly expanded under attenuated total reflectance
configuration. It is shown that the presence of a supercell
repetition in the direction perpendicular to a line defect leads
to the simultaneous excitation of defect and bulk modes folded in
a reduced Brillouin zone. Consequently, the group-velocity
dispersion of the defect modes corresponding to different
polarizations of light can be fully determined. We show also that
the measured dispersion is in good agreement with full 3D
calculations based on expansion in the waveguide modes.
We developed a UV assisted soft nanoimprint lithography (UV-SNIL) that can be applied for the reproduction of nanometer features over large areas. Based on a simple argument deduced from the Navier-Stokes equation, we suggest several solutions to enhance the imprinting process ability. One of the solutions is to use tri-layer soft stamps, which consists of a rigid carrier, a low Young's module buffer and a top layer supporting nanostructure patterns to be replicated. Typically, the buffer and the top layer are made of polydimethylsiloxane (PDMS) of 5 mm thickness and polymethylmetacrylate (PMMA) of 10-50 μm thickness respectively. Patterning of the stamp top layer can be done in three different ways, i.e., spin coating, nano-compression and direct writing, all resulting in 100 nm features over a large wafer area. Another solution is to use a bilayer resist system for which imprinting is performed on the top layer while the final pattern is obtained by transferring the top layer image into the bottom layer by reactive ion etching. Comparing to other imprint techniques, UV-SNIL works at room temperature and low pressure, which is applicable for a wafer-scale replication at high throughput. For the research purpose, we also demonstrate nanostructure fabrication by lift-off techniques.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.