Filter-On-Chip CMOS sensor equipped cameras are a convenient, reliable and affordable approach for the parallel acquisition of spatial and spectral information. The combination of pixel-arranged spectral filter matrices on CMOS sensors increases their integration density and system complexity by several times compared to standard RGB cameras. Due to their system design, these cameras have an increased spectral crosstalk and specific dependencies from the angle of radiation. The paper will show how to develop and set up a measurement arrangement for the characterization of the channel specific spectral sensitivities under different angles of radiation. These characterizations are necessary to develop a more robust model for the camera pixel-value correction to ensure the comparability and reproducibility of the measured values. Therefore, a measurement setup to investigate the influence of the angle of incident radiation on filter-on-chip CMOS sensors was developed. After initial investigations with a setup in which the camera was simply rotated and investigations with a lens and changed f-number confirmed that the angle influence results in a measurable difference in the sensor response, a new measurement arrangement was developed to investigate this behavior more precisely. The developed measurement arrangement allows multispectral resolving image sensors to be radiated with collimated light at reproducible angles of incidence and with adjustable wavelengths. By comparing the measured values with illuminances measured using a calibrated photodiode in the same setup and with the same parameters, it is possible to evaluate the angle dependence based on quantum efficiency curves according to the EMVA 1288 standard. The investigations carried out, the developed principles and the realized semi-automatic measurement arrangement will be shown and explained to characterize the capabilities of multispectral resolving filter-on-chip CMOS sensor equipped cameras for applications in industry and biomedicine.
Multispectral resolving filter-on-chip snapshot-mosaic CMOS cameras are a convenient, reliable and affordable approach for the parallel acquisition of spatial and spectral information. The combination of pixel-arranged spectral filter matrices on CMOS sensors increases their integration density and system complexity by several times compared to standard RGB cameras. Due to the system design, these cameras have an increased spectral crosstalk and specific dependencies from the angle of illumination. To ensure the comparability and reproducibility of the measured values, arrangements, methods and algorithms for the characterization are developed and applied to characterize the capabilities of these cameras. It will be shown how to characterize these cameras in accordance to the EMVA1288 standard and which methods, algorithms and additional measurement arrangements have been developed and applied to make suggestions for extending this standard concerning a possible extension of the characterization for spectral crosstalk and angle dependencies.
The metrology of freeform wavefront can be performed by the use of a noninterferometric method, such as a Shack–Hartmann sensor (SHS). Detailed experimental investigations employing an SHS as metrology head are presented. The scheme is of nonnull nature where small subapertures are measured using an SHS and stitched to give the full wavefront. For the assessment of complex misalignment errors during the spiral scanning, a library of residual slope errors has been created, which makes the alignment process fast converging for minimizing the scanning errors. A detailed analysis of the effects of slope and positioning error on reproducibility is presented. It is validated by null test where a null diffractive optical element has been used in a Mach–Zehnder configuration for compensating the freeform shape. A freeform optics is measured by both measurement schemes, and the results are in good agreement. Further, the nonnull-based scanning subaperture stitching scheme is also validated by performing measurements on an aspheric surface and compared with the measurements from the interferometric method (Zygo Verifire).
The increased range of manufacturable freeform surfaces offered by the new fabrication techniques is giving
opportunities to incorporate them in the optical systems. However, the success of these fabrication techniques depends
on the capabilities of metrology procedures and a feedback mechanism to CNC machines for optimizing the
manufacturing process. Therefore, a precise and in-situ metrology technique for freeform optics is in demand. Though
all the techniques available for aspheres have been extended for the freeform surfaces by the researchers, but none of the
techniques has yet been incorporated into the manufacturing machine for in-situ measurement. The most obvious reason
is the complexity involved in the optical setups to be integrated in the manufacturing platforms. The Shack-Hartmann
sensor offers the potential to be incorporated into the machine environment due to its vibration insensitivity, compactness
and 3D shape measurement capability from slope data. In the present work, a measurement scheme is reported in which a
scanning Shack-Hartmann Sensor has been employed and used as a metrology tool for measurement of freeform surface
in reflection mode. Simulation studies are conducted for analyzing the stitching accuracy in presence of various
misalignment errors. The proposed scheme is experimentally verified on a freeform surface of cubic phase profile.
In this paper we present chromatic confocal distance sensors for the parallelized evaluation at several lateral positions.
The multi-point measurements are performed using either one- or two-dimensional detector arrays. The first sensor combines
the concepts of confocal matrix sensing and snapshot hyperspectral imaging to image a two-dimensional array of
laterally separated points with one single shot. In contrast to chromatic confocal matrix sensors which use an RGB detector
our system works independently from the spectral reflectivity of the surface under test and requires no object-specific
calibration. Our discussion of this sensor principle is supported by experimental results. The second sensor is a multipoint line sensor aimed at high speed applications with frame rates of several thousand frames per second. To reach this evaluation speed a one-dimensional detector is employed. We use spectral multiplexing to transfer the information from different measurement points through a single fiber and evaluate the spectral distribution with a conventional spectrometer. The working principle of the second sensor type is demonstrated for the example of a three-point sensor.
Dispersion causes the focal lengths of refractive and diffractive optical elements to vary with wavelength. In our contribution
we show how it can be used for chromatic encoding and decoding of optical signals. We specifically discuss how
these concepts can be applied for the implementation of systems with applications in the growing fields of hyperspectral
imaging and chromatic distance coding. Refractive systems as well as hybrid combinations of diffractive and refractive
elements are used to create specific chromatic aberrations of the sensors. Our design approach enables the tailoring of the
sensor properties to the measurement problem and assists designers in finding optimized solutions for industrial applications.
The focus of our research is on parallelized imaging systems that cover extended objects. In comparison to point
sensors, such systems promise reduced image acquisition times and an increased overall performance. Concepts for
three-dimensional profilometry with chromatic confocal sensor systems as well as spectrally resolved imaging of object
scenes are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.