This will count as one of your downloads.
You will have access to both the presentation and article (if available).
This paper briefly describes the trends observed in Edition-1 FM5 flux data products that are corrected for inflight gain changes derived from on-board calibration sources. The strategy to detect artifacts and correct for any sensor spectral response changes is discussed. Improvements and validation results of preliminary FM5 Edition-2 products will be compared with Terra and Aqua data products.
A rigorous and comprehensive radiometric calibration and validation protocol comprising of various studies was developed to evaluate the calibration accuracy of the CERES instruments. The in-flight calibration of CERES sensors are carried out using the internal calibration module (ICM) comprising of blackbody sources and quartzhalogen tungsten lamp, and a solar diffuser plate known as the Mirror Attenuator Mosaic (MAM). The ICM calibration results are instrumental in determining the changes in CERES sensors’ gains after launch from the prelaunch determined values and the on-orbit gain variations. In addition to the broadband response changes derived from the on-board blackbody and the tungsten lamp, the shortwave and the total sensors show a spectrally dependent drop in responsivity in the shorter wavelegth region below one micron that were brought to light through validation studies. The spectrally dependent changes were attributed to the instrument operational modes and the corrections were derived using the sensor radiance comparisons. This paper covers the on-orbit behavior of CERES sensors aboard the Terra and Aqua spacecraft and the determination of the sensor response changes utilising the in-flight calibration and the radiance measurement comparisons viewing various targets. The corrections for the sensor response changes were incorporated in the radiance calculations of CERES Edition3 data products.
The shortwave and shortwave part of the total-wave sensors are calibrated using the solar radiances reflected from the MAM's. Each MAM consists of baffle-solar diffuser plate systems, which guide incoming solar radiances into the instrument fields of view of the shortwave and total wave sensor units. The MAM diffuser reflecting type surface consists of an array of spherical aluminum mirror segments, which are separated by a Merck Black A absorbing surface, over-coated with SIOx (SIO2 for PFM). Thermistors are located within each MAM plate and the total channel baffle. The CERES MAM is designed to yield calibration precisions approaching .5 percent for the total and shortwave detectors. The Terra FM1 and FM2 shortwave channels and the FM1 and FM2 total channels MAM calibration systems showed shifts in their solar calibrations of 1.5, 2.5, 1.5 and 6 percent, respectively within the first year. The Aqua FM3, and FM4 shortwave channels and the FM3 and FM4 total channels MAM calibration systems showed shifts in their solar calibrations of 1.0, 1.2, 2.1 and .8 percent, respectively within the first year. A possible explanation has attributed the MAM reflectance change to on-orbit solar ultraviolet/atomic oxygen/out-gassing induced chemical changes to the SIOx coated MAM assembly during ram and solar exposure. There is also changes to the sensor telescope shortwave filters as well as the Total channel mirrors and/or sensors. The Soumi NPP FM5 is still after 2.5 years displaying a stability of less than .5 percent. In this presentation, lessons learned from the ERBE MAM and application of knowledge of how the space environment affected the CERES FM1-4 solar calibrations will be presented along with on-orbit measurements for the thirteen years the CERES instruments have been on-orbit.
View contact details
No SPIE Account? Create one