We investigated the optical characteristics and microstructures of wave plates composed of Ta2O5(100−x)+TiO2(x) and prepared by the so-called serial bideposition technique. While a single-layer film prepared by conventional oblique deposition technique has a tilted columnar structure (i.e., tilted optical axis), a serial bideposition film has a narrow, long columnar structure; this ensures that the optical axis of the film is along the quasinormal to the substrate, thus reducing haze. The influence of using additives with Ta2O5 was investigated as well. It was found that additive TiO2 improves optical transmittance at shorter wavelengths. For verifying the advantage of this type of wave plates, quarter wave plates with optimized TiO2 content were fabricated and their optical performance and reliability were evaluated against those of organic-type wave plates. The results show that the inorganic wave plate prepared by serial bideposition is advantageous for applications where high-transmittance and high-temperature durability are essential.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.