Convolutional neural network (CNN) based deep learning is used to analyze spectral data collected by visible resonance Raman (VRR) spectroscopy to distinguish human glioma tumors from healthy brain tissues using binary classification and identify the cancer grades of the glioma tumors using multi-class classification. Classification was performed using both raw spectral data and baseline-subtracted data for comparison. The classification using both datasets yielded high accuracy, with the results obtained from baseline subtracted spectra slightly better than that obtained from raw spectra. The study showed VRR combined with deep learning provides a robust molecular diagnostic tool for accurately distinguishing glioma tumors from normal tissues and glioma tumor tissues at different cancer grades. Deep learning aided VRR technique may be used for in-situ intraoperative diagnosis of brain cancer. It may help a surgeon to identify cancer margins and even cancer grades during surgery.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.