The problem of resolving pointlike light sources not only serves as a benchmark for optical resolution but also holds various practical applications ranging from microscopy to astronomy. In this study, we aim to resolve two thermal sources sharing arbitrary mutual coherence using the spatial mode demultiplexing technique. Our analytical moment-based approach covers scenarios where the coherence and the emission rate of the sources depend on the separation between them, and is not limited to the Poissonian approximation. Studying the examples of the interactive dipoles imaging and imaging of the reflective particles under external illumination, we demonstrate that separation-dependent coherence, which arises in this scenario, can significantly enhance optical resolution.
We show that this effect is robust in the presence of the emitters dephasing and detection noise.
The resolution of optical systems, formulated as the smallest possible distance between two point sources for which they still can be dissolved, was for a long time believed to be limited by diffraction, formulated by the Rayleigh criterion. Recent advancements in quantum metrology have shown, by evaluation of the Quantum Cramér Rao bound (QCRB), that the Rayleigh criterion is not a fundamental limit. In our experiment, spatial mode demultiplexing (SPADE) is used to estimate the separation of the sources orders of magnitude below the Rayleigh limit. The experiment is extended to incorporate the measurement of additional parameters, such as power imbalance and centroid position of the two sources, bringing it closer to real-world applicability.
In the context of separation estimation between two incoherent point sources, it has recently been shown that an optimal measurement strategy, which saturates the quantum Cramer-Rao bound, involves the use of spatial mode demultiplexing method (SPADE). To realize mode selective measurement required for SPADE, we propose a new approach based on sum frequency generation (SFG). The conversion of infrared light coming from two incoherent point sources is performed in a periodically-poled lithium niobate (PPLN) crystal by mean of a spatially shaped pump laser. By analyzing the converted images obtained with pump beams shaped as Hermite-Gaussian (HG) modes, we demonstrate the mode-sorting capabilities of this system. Our experiment, shows that our measurement method can estimate separations in sub-Rayleigh regime with improved accuracy compared to the traditional direct imaging method.
We experimentally implement the separation estimation between to incoherent optical sources. Our method, relying on spatial-mode demultiplexing and intensity measurements, saturates the Cramèr-Rao bound, with a five orders of magnitude gain compared to the Rayleigh limit.
Recent developments, such as the experimental realization of large-scale cluster states, have built a valid case for continuous-variable quantum optics as a promising platform for quantum information processing. The capability of creating non-Gaussian states is key to building a universal quantum computer and achieving a quantum computational advantage. On the other hand, quantum correlations are also at the core of current developments in quantum technologies. Yet, quantum correlations in non-Gaussian states are still poorly understood for continuous-variable systems.
In this contribution we will focus on quantum steering, where Alice and Bob each share a part of bipartite quantum state and perform local measurements on their respective subsystem. Quantum steering from Alice to Bob occurs when Bob can exploit information from Alice’s measurements to infer the outcome of his observables’ measurement more precisely than allowed by classical correlations. The paradigmatic example for this phenomenon is found when Alice and Bob both measure field quadratures. In this case, Bob can construct conditional variances that violate Heisenberg’s inequality. This violation, known as Reid’s criterion, is a signature of quantum steering that relies purely on Gaussian features of the state.
More generally, we speak of Gaussian steering when we can violate steering inequality using only information from the state’s covariance matrix. For non-Gaussian states, the covariance matrix only offers limited information about the state, and many properties remain under the radar. Therefore, certification protocols of quantum steering for non-Gaussian states are scarce and generally highly demanding from an experimental point of view. In this contribution, we use a recently established connection between quantum steering and the (quantum) Fisher information to develop a new protocol for detection of quantum steering in non-Gaussian. This protocol relies exclusively on homodyne measurements.
Resolving light sources below the diffraction limit is a fundamental task both for astronomy and microscopy. Several recent works, analysed this problem through the lens of quantum parameter estimation theory and proved that the separation between two point sources can be estimated at the quantum limit using intensity measurements after spatial-mode demultiplexing. However, most previous works have either consider low-intensity, or thermal sources.
To broaden the applicability of this approach, it is important to extend these results to more general light sources.
To this goal, we will present an analytical expression for the Quantum Fisher Information, determining the ultimate resolution limit, for the separation between two sources in an arbitrary Gaussian state.
Applying this result to different quantum states, we can shine some light on some relevant questions. We can for example explore the role of partial coherence considering displaced and correlated thermal states, or investigate the importance of quantum correlations by considering squeezed light.
In addition to the ultimate quantum limit, we will discuss a simple estimation technique, requiring access only to the mean value of a linear combination of demultiplexed intensity measurements, which is often sufficient to saturate these limits, and can easily be adapted to incorporate the most common noise sources.
Finally, we will present our experimental setup that allows for the generation of the images of two sources with different photon statistics, as well as for spatial mode demultiplexing and we will discuss the first practical implementations if the above mentioned estimation techniques.
Recent works showed that the separation between two point sources can be estimated at the quantum limit using intensity measurements after spatial-mode demultiplexing. However, so far these results have been either limited to low-intensity, or thermal sources. In this talk, we will present an analytical expression for the Quantum Fisher Information for the separation between two sources in an arbitrary Gaussian states. This expression allows us to determine the ultimate resolution limit for a series of practically relevant states, e.g. correlated or displaced thermal states (corresponding to partially coherent sources) and squeezed states (exhibiting quantum correlations). Moreover, we will show how a simple estimation technique, requiring access only to the mean value of a linear combination of demultiplexed intensity measurements can be used to saturate these limits. Finally, we will discuss the applicability of the proposed methods in present experimental setups.
Wigner negativity, as a well-known indicator of nonclassicality, plays an essential role in quantum computing and simulation using continuous-variable systems. Recently, it has been proven that Einstein-Podolsky-Rosen steering is a prerequisite to generate Wigner negativity between two remote modes. Motivated by the demand of real-world quantum network, here we investigate the shareability of generated Wigner negativity in the multipartite scenario from a quantitative perspective. By establishing a monogamy relation akin to the generalized Coffman-Kundu-Wootters inequality, we show that the amount of Wigner negativity cannot be freely distributed among different modes. Moreover, for photon subtraction -- one of the main experimentally realized non-Gaussian operation -- we provide a general method to quantify the remotely generated Wigner negativity. With this method, we find that there is no direct quantitative relation between the Gaussian steerability and the amount of generated Wigner negativity. Our results pave the way for exploiting Wigner negativity as a valuable resource for numerous quantum information protocols based on non-Gaussian scenario.
Recently, it has been demonstrated that demultiplexing Hermite-Gauss (HG) modes represents the quantum-optimal measurement to estimate the distance between two incoherent sources. However, it remains unclear how to practically combine the information contained into several demultiplexing measurements to reach the ultimate resolution limits. In this contribution, we show how estimators saturating the Cramér-Rao bound for the distance between two thermal point sources can be constructed from an optimised linear combination of intensity measurements in a given number of HG modes, in presence of practical imperfection such as misalignment, crosstalk and detector noise. Moreover, we demonstrate that our strategy saturates the quantum Cramér-Rao bound, in the noiseless case, if sufficiently many modes are measured.
Superresolution techniques based on intensity measurements after a spatial mode decomposition can overcome the precision of diffraction-limited direct imaging. We present both the experimental implementation of simultaneous spatial multimode demultiplexing as a distance measurement tool and the theoretical analysis of the actual sensitivity limits given the main experimental imperfection: cross-talks between channels. We demonstrate the distance estimation between two incoherent beams in both directions of the transverse plane, and find a perfect accordance with theoretical predictions, given a proper calibration of the demultiplexer. We show that, even though sensitivity is limited by the cross-talk between channels, we can perform measurements in two dimensions much beyond the Rayleigh limit over a large dynamic range. Combining statistical and analytical tools, we obtain the scaling of the precision limits for weak, generic crosstalk from a device-independent model as a function of the crosstalk probability and N.
We carry out a numerical analysis of the spatial structure of the eigenmodes of light in atmospheric turbulence and assess the distribution of the singular values under variable turbulence conditions characterized by the Fried parameter and Rytov variance. Under weak scintillation, the highly transmitting eigenmodes found here possess a modal structure that is reminiscent of Laguerre-Gaussian (LG) modes and their simple superpositions. When scintillation becomes significant, we establish that the optimal eigenmodes for communication differ substantially from LG modes and tend to have highly localized transverse intensity distributions.
Optical Gaussian entangled states can be generated deterministically, up to very large number of modes. Furthermore, for nontrivial quantum computation, non-Gaussianity is required, which can be obtained from photon subtraction. We will explore here the controlled generation of multimode graph states from ultrafast optical pulses (optical frequency combs) and parametric down conversion in a synchronously pumped cavity, investigating in particular spectral shaping of the pump. Mode dependent photon subtraction is then implemented through sum-frequency generation, and characterization is performed through frequency resolved homodyne detection. We study the influence of a non Gaussian ingredient on a Gaussian graph state.
Near-infrared imaging InGaAs sensors show lower performances in term of noise and sensitivity compared to silicon based cameras. Image frequency conversion from near-infrared to visible wavelengths by nonlinear parametric sumfrequency mixing in a χ(2) medium should increase detection performances in active imaging applied to long range target identification. For such applications, both energy conservation and phase matching conditions are ideally suited to efficient upconversion. Nevertheless, the available resolution still hampers the development of upconversion imagers.
In this paper, we upconvert images provided by 1.5 μm collimated continuous wave lasers illuminating resolution targets and small objects. Using a 2.7 nm wide pump spectrum at 1064 nm, we resolve 56x64 spatial elements whereas we obtained only 16x19 spatial elements with a narrow spectrum pump laser at 1064 nm with the same beam diameter and 8x8 spatial elements with a 0.5 mm thick crystal. These results are compatible with long range target recognition. A laboratory scale experiment of active imaging of diffusive objects is shown as an illustration.
The nature of a quantum network, in particular in the continuous variable regime, is governed not only by the light quantum state but also by the measurement process. It can then be chosen after the light source has been generated. Multimode entanglement is not anymore an intrinsic property of the source but a complex interplay between source, measurement and eventually post processing. This new avenue paves the way for adaptive and scalable quantum information processing. However, to reach this ambitious goal, multimode degaussification has to be implemented.
Single-photon subtraction and addition have proved to be such key operations, but are usually performed with linear optics elements on single-mode resources. We present a device able to perform mode dependant non Gaussian operation on a spectrally multimode squeezed vacuum states. Sum frequency generation between the state and a bright control beam whose spectrum has been engineered through ultrafast pulse-shaping is performed. The detection of a single converted photon heralds the success of the operation.
The resulting multimode quantum state is analysed with standard homodyne detection whose local oscillator spectrum is independently engineered. The device can be characterized through quantum process tomography using weak multimode coherent states as inputs. Its single-mode character can be quantified and its inherent subtraction modes can be measured.
The ability to simultaneously control the state engineering and its detection ensures both flexibility and scalability in the production of highly entangled non-Gaussian quantum states.
The quantum nature of light imposes a limit to the detection of all properties of a laser beam. We show how we can reduce this limit for a measurement of the position of a light beam on a quadrant detector, simultaneously in two tranverse directions. This quantum laser pointer can measure the beam direction with greater precision than a usual laser. We achieve this by combining three beams, one intense coherent and two vacuum squeeezed beams, with minimum losses into one spatially multimode beam optimized for this application.
The visibility and quality of optical images is ultimately limited not by diffraction but by the quantum noise affecting each pixel of a detector. Multimode non-classical states of light, characterized by spatial quantum correlation or local reduced quantum noise, permit in principle to go beyond the standard quantum limit and therefore to improve transverse optical resolution. It has been predicted that Optical Parametric Oscillators (OPO) operating simultaneously on many transverse modes are good candidates for generating multimode non-classical states of light. We perform an experiment showing that a c.w. confocal OPO above threshold emits such states. Below threshold, the OPO is turned to a multimode optical parametric amplifier.
We present methods of transforming the standard quadrature amplitude squeezing of a continuous-wave light beam to its Stokes parameters and transverse spatial modes statistics. These two states of light are called polarization squeezing and spatial squeezing, respectively. We present experimental results of the quadrature amplitude, polarization and spatial squeezing obtained with a common experimental setup based on optical parametric amplifiers. The transformations from quadrature amplitude to polarization and spatial squeezing are achieved with only simple linear optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.