We report on broad-area lasers, mode-locked lasers (MLLs), and superluminescent light-emitting diodes (SLDs) based on a recently developed novel type of nanostructures that we refer to as quantum well-dots (QWDs). The QWDs are intermediate in properties between quantum wells and quantum dots and combine some useful properties of both. 1.08 μm InGaAs/GaAs QWDs broad area edge-emitting lasers based on coupled large optical cavity waveguides show high internal quantum efficiency of 92%, low internal loss of 0.9 cm-1 and material gain of ~1.1∙104 cm-1 per one QWD layer. CW output power of 14.2 W is demonstrated at room temperature. Superluminescent light-emitting diodes with one QWD layer in the active region exhibit stimulated emission spectra centered at 1050 nm with the maximal full width at half maximum of 36 nm and the output power of 17 mW. First results on mode-locked operation in QWD lasers are also presented. 2 mm long two-section devices demonstrate the pulse repetition rate of 19.3 GHz and the pulse duration of 3.5 ps. The width of the radio frequency spectrum is 0.2 MHz.
Novel lasing modes in a vertical-cavity surface-emitting laser (VCSEL)-type structure based on an antiwaveguding cavity are studied. Such a VCSEL cavity has an effective refractive index in the cavity region lower than the average index of the distributed Bragg reflectors (DBRs). Such device in a stripe geometry does not support in–plane waveguiding mode, and all modes with a high Q-factor are exclusively VCSEL-like modes with similar near field profile in the vertical direction. A GaAlAs–based VCSEL structure studied contains a resonant cavity with multiple GaInAs quantum wells as an active region. The VCSEL structure is processed as an edge-emitting laser with cleaved facets and top contact representing a non–alloyed metal grid. Rectangular-shaped ~400x400 µm pieces are cleaved with perpendicular facets. The contact grid region has a total width of ~70 μm. 7 μm–wide metal stripes serve as non–alloyed metal contact and form periodic rectangular openings having a size of 10x40 μm. Surface emission through the windows on top of the chip is measured at temperatures from 90 to 380 K. Three different types of modes are observed. The longest wavelength mode (mode A) is a VCSEL–like mode at ~854 nm emitting normal to the surface with a full width at half maximum (FWHM) of the far field ~10°. Accordingly the lasing wavelength demonstrates a thermal shift of the wavelength of 0.06 nm/K. Mode B is at shorter wavelengths of ~840 nm at room temperature, emitting light at two symmetric lobes at tilt angles ~40° with respect to the normal to the surface in the directions parallel to the stripe. The emission wavelength of this mode shifts at a rate 0.22 nm/K according to the GaAs bandgap shift. The angle of mode B with respect to the normal reduces as the wavelength approaches the vertical cavity etalon wavelength and this mode finally merges with the VCSEL mode. Mode B hops between different lateral modes of the VCSEL forming a dense spectrum due to significant longitudinal cavity length, and the thermal shift of its wavelength is governed by the shift of the gain spectrum. The most interesting observation is Mode C, which shifts at a rate 0.06 nm/K and has a spectral width of ~1 nm. Mode C matches the wavelength of the critical angle for total internal reflection for light impinging from semiconductor chip on semiconductor/air interface and propagates essentially as an in–plane mode. According to modeling data we conclude that the lasing mode represents a coupled state between the TM–polarized surface–trapped optical mode and the VCSEL cavity mode. The resulting mode has an extended near field zone and low propagation losses. The intensity of the mode drastically enhances once is appears at resonance with Mode B. A clear threshold is revealed in the L–I curves of all modes and there is a strong competition of the lasing mechanisms once the gain maximum is scanned over the related wavelength range by temperature change.
Low threshold current density (<400 A/cm2) injection lasing in (AlxGa1–x)0.5In0.5P–GaAs–based diodes down to the green spectral range (<570 nm) is obtained. The epitaxial structures are grown on high–index (611)A and (211)A GaAs substrates by metal–organic vapor phase epitaxy and contain tensile–strained GaP–enriched insertions aimed at preventing escape of the injected nonequilibrium electrons from the active region. Extended waveguide concept results in a vertical beam divergence with a full width at half maximum of 15o for (611)A substrates. The lasing at 569 nm is realized at 85 K. In the orange–red laser diode structure low threshold current density (200 A/cm2) in the orange spectral range (598 nm) is realized at 85 K. The latter devices demonstrate room temperature lasing at 628 nm at ~2 kA/cm2 and a total power above 3W. The red laser diodes grown on (211)A substrates demonstrate vertically multimode lasing far field pattern indicating a lower optical confinement factor for the fundamental mode as compared to the devices grown on (611)A. However the temperature stability of the threshold current and the wavelength stability are significantly higher for (211)A–grown structures in agreement with the conduction band modeling data.
We report on the temperature characteristics of edge-emitting tilted wave lasers (TWL) composed of a thin active waveguide (0.7 μm) optically coupled to a thick passive waveguide (26 μm). The active region is based on four 1040-nm InGaAs/GaAs quantum wells. The 2-mm-long and 50-μm-wide broad area lasers show characteristic temperature of 115 K and lasing up to 120°C in the continuous-wave mode. The maximal pulsed output power as high as 40 W was achieved being limited by the available current source. Vertical far-fields of the TWLs consist of two tilted narrow lobs (2.4 deg full width at half maximum each), which contain >70% of the total output power. The tilt angle of the lobes slightly increases with the temperature (by 1 deg/40°C) due to the transverse mode hopping caused by the temperature-induced changes of the waveguide refractive indices.
Tilted Wave Lasers (TWLs) based on optically coupled thin active waveguide and thick passive waveguide offer an ultimate solution for thick–waveguide diode laser, preventing catastrophic optical mirror damage and thermal smile in laser bars, providing robust operation in external cavity modules thus enabling wavelength division multiplexing and further increase in brightness enabling direct applications of laser diodes in the mainstream material processing. We show that by proper engineering of the waveguide one can realize high performance laser diodes at different tilt angles of the vertical lobes. Two vertical lobes directed at various angles (namely, +/–27° or +/–9°) to the junction plane are experimentally realized by adjusting the compositions and the thicknesses of the active and the passive waveguide sections. The vertical far field of a TWL with the two +/–9° vertical beams allows above 95% of all the power to be concentrated within a vertical angle below 25°, the fact which is important for laser stack applications using conventional optical coupling schemes. The full width at half maximum of each beam of the value of 1.7° evidences diffraction– limited operation. The broad area (50 μm) TWL chips at the cavity length of 1.5 mm reveal a high differential efficiency ~90% and a current–source limited pulsed power >42W for as–cleaved TWL device. Thus the power per facet length in a laser bar in excess of 8.4 kW/cm can be realized. Further, an ultimate solution for the smallest tilt angle is that where the two vertical lobes merge forming a single lobe directed at the zero angle is proposed.
A concept of passive cavity surface–emitting laser is proposed aimed to control the temperature shift of the lasing
wavelength. The device contains an all–semiconductor bottom distributed Bragg reflector (DBR), in which the active
medium is placed, a dielectric resonant cavity and a dielectric top DBR, wherein at least one of the dielectric materials
has a negative temperature coefficient of the refractive index, dn/dT < 0. This is shown to be the case for commonly used
dielectric systems SiO2/TiO2 and SiO2/Ta2O5. Two SiO2/TiO2 resonant structures having a cavity either of SiO2 or TiO2
were deposited on a substrate, their optical power reflectance spectra were measured at various temperatures, and
refractive index temperature coefficients were extracted, dn/dT = 0.0021 K-1 for SiO2 and dn/dT = –0.0092 K-1 for TiO2.
Using such dielectric materials allows designing passive cavity surface–emitting lasers having on purpose either positive,
or zero, or negative temperature shift of the lasing wavelength dλ/dT. A design for temperature–insensitive lasing
wavelength (dλ/dT = 0) is proposed. Employing devices with temperature–insensitive lasing wavelength in wavelength
division multiplexing systems may allow significant reducing of the spectral separation between transmission channels
and an increase in number of channels for a defined spectral interval enabling low cost energy efficient uncooled devices.
Nikolay Ledentsov, V. Shchukin, M. Maximov, Nikita Gordeev, N. Kaluzhniy, S. Mintairov, A. Payusov, Yu. Shernyakov, K. Vashanova, M. Kulagina, N. Schmidt
KEYWORDS: Waveguides, Semiconductor lasers, Near field optics, Bessel beams, Electroluminescence, Gaussian beams, Cladding, Near field, Refractive index
Ultralarge output apertures of semiconductor gain chips facilitate novel applications that require efficient feedback of the reflected laser light. Thick (10-30 μm) and ultrabroad (>1000 μm) waveguides are suitable for coherent coupling through both near-field of the neighboring stripes in a laser bar and by applying external cavities. As a result direct laser diodes may become suitable as high-power high-brightness coherent light sources. Passive cavity laser is based on the idea of placing the active media outside of the main waveguide, for example in the cladding layers attached to the waveguide, or, as in the case of the Tilted Wave Laser (TWL) in a thin waveguide coupled to the neighboring thick waveguide wherein most of the field intensity is localized in the broad waveguide. Multimode or a single vertical mode lasing is possible depending on the coupling efficiency. We demonstrate that 1060 nm GaAs/GaAlAs–based Tilted Wave Lasers (TWL) show wall-plug efficiency up to ~55% with the power concentrated in the two symmetric vertical beams having a full width at half maximum (FWHM) of 2 degrees each. Bars with pitch sizes in the range of 25–400 μm are studied and coherent operation of the bars is manifested with the lateral far field lobes as narrow as 0.1° FWHM. As the near field of such lasers in the vertical direction represents a strongly modulated highly periodic pattern of intensity maxima such lasers or laser arrays generate Bessel-type beams. These beams are focusable similar to the case of Gaussian beams. However, opposite to the Gaussian beams, such beams are self-healing and quasi non-divergent. Previously Bessel beams were generated using Gaussian beams in combination with an axicon lens or a Fresnel biprism. A new approach does not involve such complexity and a novel generation of laser diodes evolves.
We report on green (550–560 nm) electroluminescence (EL) from (Al0.5Ga0.5)0.5In0.5P–(Al0.8Ga0.2)0.5In0.5P double p–i–n heterostructures with monolayer–scale tensile strained GaP insertions in the cladding layers and light–emitting diodes (LEDs) based thereupon. The structures are grown side–by–side on high–index and (100) GaAs substrates by molecular beam epitaxy. Cross–sectional transmission electron microscopy studies indicate that GaP insertions are flat, thus the GaP–barrier substrate orientation–dependent heights should match the predictions of the flat model. At moderate current densities (~500 A/cm2) the EL intensity of the structures is comparable for all substrate orientations. Opposite to the (100)–grown strictures, the EL spectra of (211) and (311)–grown devices are shifted towards shorter wavelengths (~550 nm at room temperature). At high current densities (>1 kA/cm2) a much higher EL intensity is achieved for the devices grown on high–index substrates. The integrated intensity of (311)–grown structures gradually saturates at current densities above 4 kA/cm2, whereas no saturation is revealed for (211)–grown structures up to the current densities above 14 kA/cm2. We attribute the effect to the surface orientation–dependent engineering of the GaP band structure which prevents the escape of the nonequilibrium electrons into the indirect conduction band minima of the p– doped (Al0.8Ga0.2)0.5In0.5P cladding layers.
N. Ledentsov, V. Shchukin, N. Yu. Gordeev, Yu. Shernyakov, A. Payusov, M. Maximov, N. Kaluzhniy, S. Mintairov, V. Lantratov, K. Vashanova, M. Kulagina, S. Rouvimov
We report results on 1060 nm GaAs/GaAlAs–based Tilted Wave Lasers employing multiple InGaAs quantum wells without strain compensation as active medium. The devices are edge–emitting lasers composed of a thin active waveguide optically coupled to a thick passive waveguide responsible to form a tilted optical wave that results in two narrow lobes in the vertical far field profile of the emitted laser light. Devices with different thicknesses of the passive waveguide have been fabricated. The laser with the 26 μm–thick waveguide has low internal losses of 1.4 cm–1, reaches for the as cleaved facets device with 1.5 mm–long cavity the differential efficiency of 81%. The 50 μm broad area device demonstrates the maximum wall–plug efficiency in the continuous wave (cw) mode ~50% and the linear output power up to and above 4 W. The laser light is concentrated in two narrow vertical beams, each 2° full width at half maximum in a good agreement with theory.
The effective refractive index of the active region of 1.3 μm edge-emitting tilted wave lasers based on InAs/InGaAs self-assembled quantum dots by the analysis of the far-field pattern is investigated. The obtained values of 3.485 and 3.487 in the operating lasers and in the cold waveguides, respectively, are well comparable with the refractive index of bulk InAs at corresponding wavelength.
KEYWORDS: Waveguides, Semiconductor lasers, Photonic crystals, Active optics, Cladding, Near field, Near field optics, High power lasers, Crystals, Phase matching
The concepts, features, modeling and practical realizations of high power high brightness semiconductor diode lasers
having ultrathick and ultrabroad waveguides and emitting in the single vertical single lateral mode are analyzed.
Ultrathick vertical waveguide can be realized as a photonic band crystal with an embedded filter of high order modes. In
a second approach a tilted wave laser enables leakage of the optical wave from the active waveguide to the substrate and
additional feedback from the back substrate side. Both designs provide high power and low divergence in the fast and the
slow axis, and hence an increased brightness. Lateral photonic crystal enables coherent coupling of individual lasers and
the mode expansion over an ultrabroad lateral waveguide. Experimental results are presented. Obtained results
demonstrate a possibility for further expansion of the concept and using the single mode diodes having an ultrabroad
waveguide to construct single mode laser bars and stacks.
Self-assembled InAs quantum dots (QDs) have been the subject of intense research in part due to their potential for
quantum information systems. However, many quantum information schemes require placing quantum dots at predetermined
positions. Local anodic oxidation (LAO) on the base of atomic force microscope (AFM) is considered to be
an effective tool for ex-situ patterning of GaAs substrate for further site-controlled growth of InAs quantum dots. We
have experimentally shown that ex-situ AFM scanning without LAO (both in tapping and contact mode) of epitaxial
GaAs surface modifies locally its properties while the surface topology remains unchanged. It has been revealed that
AFM-treated area shows nucleating processes in MOCVD growth completely different from that of untreated area. The
processes are found to be critical for growing of self-organized InAs quantum dots. Local surface density of grown
quantum dots is significantly reduced in the AFM-treated area and its value depends on the number of the scan cycles. In
the same epitaxial process the local surface density of quantum dots may be varied from 1011 cm-2 to 107cm-2. We discuss
the nature of the observed phenomena in particular AFM-induced changes in surface potential. The observed effect in
combination with LAO may be considered as a new tool for engineering surface density and position of epitaxially
grown quantum dots.
We have designed, fabricated and measured the performance of two types of edge emitting lasers with unconventional
waveguides and lateral arrays thereof. Both designs provide high power and low divergence in the fast and the slow axis,
and hence an increased brightness. The devices are extremely promising for new laser systems required for many
scientific and commercial applications. In the first approach we use a broad photonic crystal waveguide with an
embedded higher order mode filter, allowing us to expand the ground mode across the entire waveguide. A very narrow
vertical far field of ~ 7° is resulting. 980 nm single mode lasers show in continuous wave operation more than 2 W,
ηwp ~ 60%, M2 ~ 1.5, beam parameter product of 0.47 mm×mrad and a brightness ~ 1×108 Wsr-1cm-2 respectively. First
results on coherent coupling of several lasers are presented. In the second approach we use leaky designs with feedback.
The mode leaks from a conventional waveguide into a transparent substrate and reflects back, such that only one mode at
a selected wavelength is enhanced and builds up, others are suppressed by interference. 1060 nm range devices
demonstrate an extremely narrow vertical far field divergence of less than 1°.
We discuss wavelength stabilized all-epitaxial Tilted Cavity Lasers (TCLs). Optical cavity of a TCL favors propagation of only one tilted optical mode ensuring wavelength-selective operation. The possibility of full control of the thermal shift of the lasing wavelength d λ/dT in TCL
including positive, zero or negative shift, is proved theoretically. Broad-area
(100 μm) 970-nm-range devices have been fabricated showing a high temperature stability of the lasing wavelength
(0.13 nm/K), a high power operation (> 7 W in pulsed mode and > 1.5 W in continuous wave (cw) mode), and a narrow
vertical far-field beam divergence (FWHM ~ 20°). Single transverse mode edge-emitting 4 μm-wide-ridge TCLs
demonstrated high-power spatial and spectral single mode cw operation with a longitudinal side mode suppression ratio
(SMSR) up to 41.3 dB at 93 mW output power. Such a result is similar to the best values achieved for DFB lasers in the
same spectral range, while no etching and overgrowth is used in present case.
N. Yu. Gordeev, M. Maximov, Y. Shernyakov, I. Novikov, L. Ya. Karachinsky, V. Shchukin, T. Kettler, K. Posilovic, N. Ledentsov, D. Bimberg, R. Duboc, A. Sharon, D. Arbiv, U. Ben-Ami
Direct laser diodes can typically provide only a limited single mode power, while ultrahigh-brightness is required for
many of the market-relevant applications. Thus, multistage power conversion schemes are applied, when the laser diodes
are used just as a pumping source. In this paper we review the recent advances in ultra-large output aperture edge-emitting
lasers based on the photonic band crystal (PBC) concept. The concept allows near- and far-field engineering
robust to temperature and strain gradients and growth nonuniformities. High-order modes are selectively filtered and the
effective optical confinement of the fundamental mode can be dramatically enhanced. At first, we show that robust ultra-narrow
vertical beam divergence (<5 deg. FWHM) can be achieved simultaneously with ultrahigh differential efficiency
(80-85%) and significant single mode power for several wavelengths of the key regions. A maximum single mode power
of 1.4 W is achieved for 980 nm lasers. At second we extend the PBC concept towards the 2D photonic crystal. A
significant field extension in the vertical direction allows a robust fabrication of the field-coupled lateral multistripe PBC
arrays with a total multistripe width of 0.2 mm. We also demonstrate that the concept of high-order modes filtering
works well also in the lateral direction. Finally, we address possible options for 3D managing of light towards
wavelength stabilized laser operation by processing of the multistripe arrays along their lengths. The concept opens a
way for 3D photonic crystal edge emitting lasers potentially allowing scalable single mode power increase to arbitrary
high levels.
KEYWORDS: Photonic crystals, Laser crystals, Waveguides, Semiconductor lasers, Refractive index, Crystals, Reflectivity, High power lasers, Gallium arsenide, Near field optics
High concentration of optical power in a narrow exit angle is extremely important for numerous applications of laser diodes, for example, for low-cost fiber pumping and coupling, material processing, direct frequency conversion, etc. Lasers based on the longitudinal photonic band crystal (PBC) concept allow a robust and controllable extension of the fundamental mode over a thick multi-layer waveguide region to achieve a very large vertical optical mode spot size and, consequently, a very narrow vertical beam divergence. Many undesirable effects like beam filamentation, lateral multimode operation and catastrophic optical mirror damage (COMD) are strongly reduced. 650 nm GaInP/GaAlInP PBC lasers show narrow far field pattern (FWHM~7°) stable up to the highest output powers. Differential efficiency up to 85% is demonstrated. Total single mode output power as high as 150 mW is achieved in 4 μm-wide stripes in continuous wave operation, being limited by COMD due to not passivated facets. The lateral far field FWHM is 4 degrees. 840 nm GaAs/GaAlAs PBC lasers show a vertical beam divergence of 8° (FWHM) and a high differential efficiency up to 95% (L=500 μm). A total single mode CW power approaches 500 mW for 1 mm-long 4 μm-wide stripes devices at ~500 mA current, being COMD-limited. The lateral far field FWHM is 5 degrees. Another realization of a longitudinal PBC laser allows lasing in a single high-order vertical mode, a so-called tilted mode, which provides wavelength selectivity and substantially extends the possibility to control the thermal shift of the lasing wavelength. In a multilayer laser structure, where the refractive index of each layer increases upon temperature, it is possible to reach both a red shift of the lasing wavelength for some realizations of the structures, and a blue shift for some others. Most important, the absolute thermal stabilization of the lasing wavelength of a semiconductor laser can be realized.
We report on lasers and light emitting diodes based on the longitudinal photonic bandgap crystal (PBC) concept. The PBC design allows achieving a robust and controllable extension of the fundamental mode over a thick multi-layer waveguide region to obtain a very large vertical optical mode spot size and a very narrow vertical beam divergence. An efficient suppression of high order modes can be realized either by the optical confinement factor selection of the fundamental mode, which is localized at the "optical defect" region and has a higher overlap with the gain region. All the other modes spread across the thicker PBC waveguide. In another approach leakage loss selection can be used to suppress excited modes in case of absorbing substrate or the substrate with a higher-refractive index. In this paper we concentrate on growth and performance of high power single mode visible (650 nm) GaInP/AlGaInP PBC lasers, giving a comprehensive example. The devices show narrow far field pattern (full width at half maximum of vertical beam divergence of about 7°), which is stable up to the highest output powers. Differential efficiency up to 85% is demonstrated. Total continuous wave single mode output power as high as 120 mW is achieved in 4 micrometer-wide stripes. Infrared (980 nm) InGaAs/AlGaAs PBC lasers with a beam divergence down to 4.2 degrees and a high temperature stability of the threshold current are also demonstrated.
The Tilted Cavity (TC) concept has been proposed to combine advantages of edge- and surface-emitting lasers (detectors, amplifiers, switches, etc.). Tilted Cavity Lasers (TCL) enable wavelength-stabilized high-power edge and surface emitters (TCSEL) in low-cost single-epitaxial step design. The concept covers numerous applications including mode-locked TCL for light speed control, dispersion and linewidth engineering, GaN-based light-emitters, electrooptic wavelength tunable devices, and other applications. Presently, wavelength stabilized TC operation is realized between -200°C and 70°C in broad TCL diodes with cleaved facets based on quantum dots (QDs). The spectral width is below 0.6 nm in broad area 100 μm-wide-stipe devices. The far fields are: 4° (lateral) and 42° (vertical). Wavelength-stabilized 1.16 μm and 1.27 μm edge-emitting QD TCL lasers are demonstrated. Quantum well TCL demonstrate high-temperature operation up to 240°C with a low threshold, high temperature stability and improved wavelength stability. The tilted cavity approach can also be applied in wavelength-optimized photodetectors, switches, semiconductor optical amplifiers, including multi-channel devices, in optical fibers, in photodetectors, in light-emitting diodes and in many other applications. Moreover, microelectronic devices based on similar tilted angle resonance phenomena in quantum wells and superlattices can be realized in electron- or hole-wavefunction-engineered structures, thus, merging the fields of nanophotonics and nanoelectronics. The tilted cavity concept can be further complimented by lateral patterning and (or) processing of three-dimensional photonic crystal structures further extending horizons of modern optoelectronics.
Time-resolved photoluminescence decay measurements have been performed on samples with varying sized self-assembled InAs/GaAs quantum dot ensembles, formed by substrate mis-orientation alone, but otherwise under identical growth conditions. Ground-state radiative recombination lifetimes from 0.8 to 5.3 ns in the incident energy density range of 0.79 pJcm-2 - 40 nJcm-2 at a temperature of 77 K were obtained. It was found that a reduction of the quantum dot size led to a corresponding reduction of the radiative lifetime. The evident bi-exponential decay was obtained for the ground state emission of the quantum dot array, with the slower second component attributed to a carrier re-capturing and indirect radiative recombination processes. Also experimental evidence of the effect of the AlGaAs barrier in InAs QDs emitting in the wavelength range 1200-1300nm is presented. Time-resolved photoluminescence measurements have been performed on samples with different compositions of Al in the barrier. A full discussion of the lifetimes of these near infra-red emitting dots will be presented.
Electroluminescent study of heterolasers based on vertically coupled self-assembled quantum dots has been done. Luminescent parameters were measured in the 77 ÷ 300 K temperature range. Lasing via ground state of quantum dots up to room temperature has been shown. Temperature independence of the electoluminescent peak position, which corresponds to the second excited state in quantum dots, has been explained.
Two-photon absorption of 1.55 μm light in quantum well InGaAsP/InP laser heterostructures has been measured. Nonlinear response as high as 0.78 nA/mW2 has been found. Minimal detectable peak power 60 μW allows using this kind of semiconductor waveguide as a detector in optical autocorrelator to investigate low-power signal.
Dicke superradiance mechanism is suggested as a transition phase from spontaneous to stimulated emission in semiconductor laser heterostructures. Model, which describes “macrodipoles” formation in the active layer of heterostructures is proposed. Estimated characteristic radiation time of these “microdipoles” was obtained in sup-picosecond range, which is in a good agreement with our previous experimental results.
The concept of resonant carrier many body interaction during radiative recombination was applied to explain spectra of quantum well electroluminescence at 77 K. Extremely good agreement of the calculated and experimental spectra in the entire range of emission has been achieved. Estimations give a sub-picosecond characteristic time of such radiation process.
The characteristics of injection laser with recombination region based on (In,Ga)As quantum dots have been studied. The quality of the structures does not prevent the specific features of quantum dot active region to manifest itself in laser characteristics. The single-mode lasing has been reproducibly achieved in broad area laser diodes. The threshold current densities have been found to be higher than the theoretical values due to non-radiative recombination. The results obtained are promising for applications where a very narrow lasing spectrum is important, i.e., laser arrays, pumping of solid-state lasers, etc.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.