To control thermo-optic (T-O) coefficient of polymer materials, hybrid polymer system with inorganic nanoparticles
was examined. Polymer materials have high T-O coefficient but low refractive index. On the other hand, inorganic
materials have low T-O coefficient but high refractive index. Then surface treated inorganic nanoparticles were dispersed
into epoxy polymers. By increasing inorganic nanoparticle contents, refractive index of hybrid polymer changed and its
T-O coefficient decreased.
An unparalleled range of photonic nanocomposites has been developed utilizing surface engineering over preformed nanoparticles. These nanocomposites cover a number of organic polymers as host materials. By controlling a loading level of inorganic nanoparticles (e.g., nano-TiO2) within a polymer host, important optical parameters including the refractive index (n) can be varied over 50~100 % with respect to the corresponding polymer matrix. This refractive index control capability enables a large refractive index contrast (Dn) that is a very significant requirement for fabrication of microphotonic devices such as photonic crystals. High levels of nanoparticle dispersion within a polymer host can be achieved even at loading levels up to 60 wt% to assure low scattering, i.e., transparent coated films in the infrared and visible light regions for photonic crystal applications. This paper presents nano-engineered polymer-based photonic crystal materials and processes to make them. Use of very uniform nanoparticles preformed by laser-driven chemical reaction is vital for successful fabrication of optical-class composite films and described here. Major benefits out of the current approach are discussed including (a) high Δn, (b) easy-to-fabricate 'hetero-interface', a minimal unit of periodic photonic crystal structures, and (c) significant economical benefit.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.