Greyscale lithography is applied to manufacture complex 2.5D and freeform microstructures in photoresists which serve as master for the pattern transfer into materials for permanent applications, often used in micro-optics. We present the results and the challenges in reproducible generation of deep greyscale patterns in a highly sensitive greyscale positive photoresist, mr-P 22G_XP, when using photomask-based mask aligner greyscale lithography in contrast to laser direct writing on which resist development had been focused. Furthermore, we show the influence of resist aging on the resist response, and ways to correct it by process adaption, as well as we conclude requirements to greyscale photomasks suitable to make use of the full potential of the mr-P 22G_XP resist dedicated for >100μm deep greyscale patterns.
In this paper, a patterning approach via i-line grayscale exposure is presented. The i-line wafer stepper (NIKON NSR2205i11D) together with specialized grayscale reticles from Benchmark Technologies (USA), manufactured with half-toning technique, are used. The positive tone and low contrast grayscale ma-P 1275G photoresist is manufactured by Micro Resist Technology (Berlin, Germany) and used in this work; it is part of the ma-P 1200G grayscale resist series and can cover a thickness range of 5 μm to 14 μm. The lithographical pattering process is performed on 6-inch wafers. Essential parameters like the contrast curve measured in the resist as well as after the dry etching are evaluated. Different 2.5D structures like micro lens arrays, blazed gratings, frustums and Fresnel lenses are fabricated by i-line stepper gray scale lithography and ma-P 1275G demonstrating its excellent behavior to generate 2.5D grayscale patterns. For the characterization of the generated 2.5D grayscale patterns a stylus profilometer, atomic force microscopy (AFM), scanning electron microscopy (SEM) and confocal microscope are used. In this paper the process of setting up a grayscale exposure with an i-line stepper and a grayscale reticle and the need to adapt the grayscale reticle in different iterations is presented and discussed.
Recent work has shown that bimetallic films, such as Bi/In and Sn/In, can create laser direct-write grayscale
photomasks. Using a laser-induced oxidation process; bimetallic films turn transparent with variations in optical
transparency that are a function of the laser power. The films exhibit transmittances <0.1% when unexposed and >60%
when full laser exposed. A novel grayscale photolithography technique is presented that utilizes conventional chrome
photomasks as the high resolution pattern-defining layer with a bimetallic thin film layer deposited on top as the
grayscale-defining layer. Having the grayscale layer on top of the chrome, grayscale patterns can be aligned to the
underlying chrome patterns. Laser power and bimetallic thin film thickness are carefully calibrated such that no chrome
ablation or conversion occurs. The calibration ensures that during laser scanning, the bottom chrome layer defines the
fine features of the underlying patterns and remains unchanged, while the bimetallic thin film layer is converted to
provide grayscale tones. To further investigate the optical density (OD) properties of this type of mask, we measured the
transient time response for pure chrome mask and Bi/In coated chrome mask to help fine tune the laser writing
parameters. Using bimetallic Bi/In/Cr photomasks, we have successfully created continuous tone 3D structures with
superimposed binary structures in SU-8 photoresist. By introducing this novel combined chrome-bimetallic mask, the
fine detail features found in binary lithography may be combined with smoothly-varying 3D microstructures best suited
to grayscale methods.
The initial experimental verification of a polarization monitoring technique is presented. A series of phase shifting mask patterns produce polarization dependent signals in photoresist and are capable of monitoring the Stokes parameters of any arbitrary illumination scheme. Experiments on two test reticles have been conducted. The first reticle consisted of a series of radial phase gratings (RPG) and employed special apertures to select particular illumination angles. Measurement sensitivities of about 0.3 percent of the clear field per percent change in polarization state were observed. The second test reticle employed the more sensitive proximity effect polarization analyzers (PEPA), a more robust experimental setup, and a backside pinhole layer for illumination angle selection and to enable characterization of the full illuminator. Despite an initial complication with the backside pinhole alignment, the results correlate with theory. Theory suggests that, once the pinhole alignment is corrected in the near future, the second reticle should achieve a measurement sensitivity of about 1 percent of the clear field per percent change in polarization state. This corresponds to a measurement of the Stokes parameters after test mask calibration, to within about 0.02 to 0.03. Various potential improvements to the design, fabrication of the mask, and experimental setup are discussed. Additionally, to decrease measurement time, a design modification and double exposure technique is proposed to enable electrical detection of the measurement signal.
An automated aberration extraction method is presented which allows extraction of lithographic projection lens' aberration signature having only access to object (mask) and image (wafer) planes. Using phase-wheel targets on a two-level 0/π phase shift mask, images with high sensitivity to aberrations are produced. Zernike aberration coefficients up to 9th order have been extracted by inspection of photoresist images captured via top-down SEM. The automated measurement procedure solves a multi-dimensional optimization problem using numerical methods and demonstrates improved accuracy and minimal cross-correlation. Starting with a detailed procedure analysis, recent experimental results for 193-nm projection optics in commercial full field exposure tools are discussed with an emphasis on the performance of the aberration measurement approach.
KEYWORDS: Semiconducting wafers, Sensors, Chemical mechanical planarization, Scanners, Back end of line, Monochromatic aberrations, Calibration, Process control, Front end of line, Etching
The understanding of focus variation across a wafer is crucial to CD control (both ACLV and AWLV) and pattern fidelity on the wafer and chip levels. This is particularly true for the 65nm node and beyond, where focus margin is shrinking with the design rules, and is turning out to be one of the key process variables that directly impact the device yield. A technique based on the Phase-Shift Focus Monitor (PSFM) is developed to measure realistic across-wafer focus errors on materials processed in actual production flows. With this technique, we are able to extract detailed across-wafer focus performance at critical pattern levels from the front end of line (FEOL) all the way through the back end of line (BEOL). Typically, more than 8,000 data points are measured across a wafer, and the data are decomposed into an intra-field focus map, which captures the across chip focus variation (ACFV), and an inter-field focus map, which describes the across wafer focus variation (AWFV). ACFV and AWFV are then analyzed to understand various components in the overall focus error, including; across slit lens image field, reticle shape and dynamic scan components, local wafer flatness, wafer processing effect, pattern density, and edge die abnormality. The intra-field ACFV lens component is compared with TI's ScatterLith and ASML's FOCAL techniques. Results are consistent with the predictions based on the on-board lens aberration data. Inter-field AWFV is the most interesting, due to lack of detailed understanding of the process impact on scanner focus and leveling. PSFM data is used to characterize the effect of wafer processing such as etch, deposition, and CMP on across wafer focus control. Comparison and correlation of PSFM focus mapping with the wafer height and residual moving average (MA) maps generated by the scanner's optical leveling sensors shows a good match in general. Process induced focus errors are clearly observed on wafers of significant film stack variation and/or pattern density variation. Implications on total focus control and depth of focus (DOF) requirements for 65nm mass production are discussed in this paper using a quantitative pattern yield model. The same technique can be extended to immersion lithography.
Device Design criteria and product complexity have reduced the Focus Budget on today's technologies to near zero. Recent years have seen the introduction of a number of focus monitor methods involving new designs and processes that attempt more accurately or more easily to define the focus performance of our imaging systems. We have evaluated several focus monitoring techniques and compared their relative strengths and speed. The objective of this study is to demonstrate each technology's ability to evaluate exposure tool lens performance and quantify those factors that directly degrade depth-of-focus in the process. Baseline focus for process exposure and lens aerial image aberration analysis is evaluated using focus matrices. The remaining contributors to depth-of-focus (DOF) degradation are derived from the opto-mechanical interactions of the tool during full-wafer exposures. Full-wafer exposures, biased to -100 nm focus, were used in the determination of these error sources. Exposing all test sequences on the same 193 nm scanner provided consistency of the comparison. A valid analytical comparison of the technologies was further guaranteed by using a single software tool, Weir PSFM software from Benchmark Technologies, to calibrate, analyze and model all metrology. Two of the four techniques we evaluated were found to require focus matrices for analysis. This prohibited them from being able to analyze the fixed-focus exposure detractors to the DOF. One technique was found to be ineffective at the 193 nm because of the high-contrast response of the photoresists used. An analysis of the aerial image was validated by comparison of each technique to the Z5 Zernike as measured by ASML's ARTEMIS analysis. The ASML FOCAL and Benchmark PGM targets, both replicating dense- packed feature response, best tracked ARTEMIS signature. A whole-wafer, fixed exposure tool focus analysis is used to evaluate wafer, photoresist and dynamic scan contributions to the focus budget. Of the four techniques considered only the PSFM and PGM patterns could be used for this evaluation. Performance response is reported for detractors involving the wafer as well as the mechanical scan direction of the reticle stage.
Latest trends in optical lithography will dramatically change the way we need to look at defect printability and the impact that defects have on the performance of our devices. The prediction is, that linewidth variations will have the most severe impact, causing devices to perform under specification, or at least costing the manufacturers substantial photo limited yield by having to bin die in lower speed performance bins. A mask error enhancement factor may actually make defect print more severe in certain pattern, context, and linewidth variations across the pate will cause severe problems in the device manufacturing process to maintain ACLV at an acceptable level. Having to use RET technologies, such as OPC and PSM, may actually aggravate the printability problems. In this study, a special reticle design was used to investigate defect sizes, location and permutation, to evaluate: (i) defect sensitivity and capture in an advanced reticle inspection system, (ii) printability prediction using a sophisticated wafer image simulation software package, (iii) printability of 'traditional' vs. hidden linewidth error defects, (iv) the true CD impact of a given defect on LW performance using an advanced CD-SEM.
The phase shift focus monitor technique is based on the fact that phase shift structures which utilize a non-180 degree(s) shift exhibit asymmetric imaging which is proportional to defocus. This asymmetry results in a lateral displacement of the printed features, which can be measured quickly at a number of locations across the field and across the wafer with a registration measurement tool. The monitor provides a means of evaluating focus effects such as lens tilt, chip leveling, astigmatism, and field and wafer flatness. This paper presents a detailed investigation of the focus monitor. Experiments were performed to evaluate the effects of linewidth and exposure dose on the sensitivity of the monitor. An alternative measurement structure was also evaluated. Monitor repeatability was assessed, indicating that wafer-to-wafer variation is the largest source of repeatability error. Unexpected variation in sensitivity and calibration curve offset across the field was observed. These effects make interpretation of the focus data problematic. Potential factors which might contribute to the variability of the monitor were analyzed. Partial coherence uniformity appears to have a significant impact on the monitor, but does not entirely explain the observed effects. Potential use of the monitor as a coherence mapping tool is proposed.
There is growing consensus that 350 nm design rules will be accomplished using i-line lithography. Recent developments in i-line lithography have pushed NA and field size to acceptable levels for 64 MB DRAM manufacturing. Simpler PSM technologies may be used to augment performance in first generation 64 MB DRAM manufacturing. Depending on the topography requirements, it may be necessary to have more process latitude at critical line/space layers. I-line lithography, with conventional binary intensity masks (BIM) should provide adequate process latitude at 400 nm design rules. Incremental improvements in process latitude at feature sizes around this design rule can be obtained using attenuated phase PSM technology. This paper presents data on the implementation of BIM and various PSM technologies in conjunction with a variable NA, variable (sigma) i-line stepper. Optimization of NA and (sigma) have been performed using the various mask technologies to maximize process latitude at features sizes from 450 nm down to below 300 nm. Ultimately, a path is provided to achieve adequate lithographic performance for both first and second generation 64 MB DRAM manufacturing.
Phase shift technology shows promise to extend the useful resolution and focus latitude to contemporary optical steppers. If successful in application, this represents significant cost savings to the manufacturing wafer fobs provided that the steppers can be used or modified to take advantage of phase-shift techniques. In this paper we explore the limits of phase-shift lithography, particularly at i-line. We do this following a two-fold approach: a) using simulations and b) collecting experimental data using different resist processes and phase-shift techniques. We conclude that using state-of-the-art photoresist processes and phase-shift techniques, i-line optical lithography can be extended to the 0.25 ?m regime.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.