We report formation of an optical cavity and observation of Fabry-Perot resonance in GaAs nanowires and nanosheets
grown by metal organic chemical vapor deposition (MOCVD) with selective area growth (SAG). These nanostructures
are grown along the (111)B direction. The formation of an optical cavity in the nanowires and nanosheets are
fundamentally different from each other. In nanowires the optical cavity is formed along the length of the nanowire with
ends of the nanowire behaving as two parallel mirrors. In nanosheets, however, the three non-parallel edges of the GaAs
nanosheets are involved in trapping of the light through total internal reflection, thus forming a 2D cavity. We show that
through surface passivation and local field enhancement, both the photoluminescence intensity and hence Fabry-Perot
peak intensity increases significantly. Transferring the GaAs nanowires and nanosheets to the gold substrate (instead of
Si/SiO2 substrate) leads to substantial enhancement in the photoluminescence intensity by 5X (for nanowires) and 3.7X
(for nanosheets) to infinite enhancement of the FP peaks intensities. In order to reduce the non-radiative recombination
in these nanowires the surface states in the nanowires can be passivated by either an ionic liquid (EMIM-TFSI) or an
AlGaAs surface layer. Both passivations methods lead to an enhancement of the optical response by up to 12X.
GaAs nanostructures are used in different optoelectronic applications including solar cells, LEDs and fast electronics. Although GaAs shows outstanding optical properties, it suffers from surface states and consequently high surface recombination velocity. The surface depletion effects lead to semi-insulating behaviors in GaAs devices. Passivation of GaAs nanostructures (AlGaAs or ionic liquid) lead to surface stability and improvement in optoelectronic properties. We provide a systematic study to compare the optical and electrical improvement after passivation (AlGaAs or ionic liquid) of GaAs nanostructure including nanowires and nanosheets. Both room temperature and low temperature photoluminescent (PL) spectra indicate increase in optical activity of GaAs nanostructures after passivation. Electron beam induced current (EBIC) measurements reveal the diffusion length of carries in different GaAs nanostructures.
Recently nanostructure materials have emerged as a building block for constructing next generation of photovoltaic
devices. Nanowire based semiconductor solar cells, among other candidates, have shown potential to produce high
efficiency. In a radial pn junction light absorption and carrier collection can be decoupled. Also nanowires can increase
choice of materials one can use to fabricate high efficiency tandem solar cells by relaxing the lattice-match constraint.
Here we report synthesis of vertical III-V semiconducting nanowire arrays using Selective-Area Metal Organic
Chemical Vapor Deposition (SA-MOCVD) technique, which can find application in various optoelectronic devices. We
also demonstrate nanosphere lithography (NSL) patterning techniques to obtain ordered pattern for SAMOCVD.
Reflection spectrum of nanowires array made by this technique shows excellent light absorption performance
without additional anti-reflection coating layer. Thus, we show that highly ordered nanowire structure is 'not needed' to
maximize the absorption in vertical nanowire array. Our scalable approach for synthesis of vertical semiconducting
nanowire can have application in high throughput and low cost optoelectronic devices including photovoltaic devices.
Device characteristics of photonic crystal lasers formed in InGaAsP membranes bonded to a sapphire substrate are discussed. Also discussed are waveguide loss mechanisms in type-A and type-B photonic crystal waveguides and the transmission properties of photonic crystal waveguide bends.
Microresonators are of considerable interest in wavelength division multiplexing (WDM) applications due to their small feature size and versatile functionality. When combined with other high-Q passive and active elements connected through a common bus line, microresonator lasers will enable the fabrication of sophisticated photonic integrated circuits (PICs) that take full advantage of compact chip layouts. Circular microresonator lasers are attractive sources for PICs because of their cleavage-free cavity and excellent wavelength selectivity. We have demonstrated an InP/InGaAsP microdisk resonator laser, where a high-Q microdisk lasing mode is vertically coupled out through a straight bus waveguide. The vertically coupled design is realized by using wafer-boding techniques. By connecting multiple microdisk lasers through a common output bus line, we have demonstrated an 8-channel laser arrays with 1.6 nm (200 GHz) spectral channel spacing. The channel spacing is achieved by varying the disk resonator radii from 10.6 to 10.95 mm. Typical threshold current of ~ 7 mA is observed under CW lasing operation near 1510 nm. In this presentation we will discuss the operating characteristics of microresonator lasers and the use of resonators in laser cavities as wavelength selection and stabilization elements.
Photonic crystal microcavity lasers are potentially attractive optical sources for future communication systems. They operate at lithographically defined wavelengths and because of their small volumes they are expected to exhibit low operating powers. Much work remains to be done, however, in order for these sources to find mainstream applications. In this presentation we will report on our work on optically pumped photonic crystal lasers. Finite-difference time-domain and finite element simulations will be presented as part of a discussion of the resonant cavity design. The trade-offs in the design of photonic lattice hole radius and membrane thickness will also be included, and we will discuss strategies for minimizing the optical loss in these cavities. The photonic crystal laser cavities reported here are defined by electron beam lithography in pmma. The pmma is subsequently used as a mask to transfer the pattern into a Cr/Au layer in an ion beam milling step. This patterned metal layer is then used as a mask for a reactive ion etch that patterns a silicon nitride layer. Finally this layer is used as a mask to transfer the lattice into the InGaAsP semiconductor using an ECR etching step. Suspended membranes are formed by chemically undercutting the lattice. This provides strong optical confinement at the semiconductor/air interfaces at the top and bottom of the cavity.
We have demonstrated pulsed, optically pumped lasing at and above room temperature in these resonant cavities using a semiconductor diode laser as the pump. The resonant cavity in our demonstration is formed by removing 19 holes from a triangular lattice and is about 2.6 mm across. Incident threshold pump powers for this cavity size as low as 0.5 mW have been demonstrated at room temperature. The peak output power collected through an optical fiber is approximately 2 mW. Lasing is seen for pump pulses as long as 200 ns. We have also demonstrated lasing in these cavities at elevated substrate temperatures. This demonstration was done using an 860 nm top emitting VCSEL as the pumping source because we expect it to provide a direction towards monolithic, electrically addressable lasers. Input power versus output power lasing characteristics for substrate temperatures up to 50 °C have been obtained. We will also report on our work on lithographic fine-tuning of the lasing wavelength. This wavelength can be defined through the lattice constant or the hole radius. This feature of photonic crystal lasers allows the definition of multiwavelength arrays. We have built and characterized arrays in which the lattice constant varies 2 nm steps across the array. The lasing wavelength redshifts with increasing lattice constant with an average separation between adjacent lasing wavelengths of 4.6 nm. The lasing wavelength tunes through the gain spectrum before the laser mode hops. Finally, we will present data on the optical loss in these cavities obtained by varying the number of lattice periods. We observed a reduction in incident threshold pump powers with increasing number of lattice periods at least through 11 periods.
We have recently described a wavelength-recognizing switch (WRS) which we showed to be capable of truly all-optical routing. Although other authors had previously reported "all-optical" networks [1, 2, 3], the term has generally referred to all—optical data paths only. In such implementations only the data remains in optical format as it propagates along the network paths. Optical-to-electronic conversions are still allowed for what is termed "control signals," namely address bits and additional signaling entities, which are assumed to have lower speed than the data. In contrast, the WRS we presented has the capability to route data by interpreting the control signals in the optical domain, thus avoiding the overhead and the latency ofthe optic-to-electronic conversion. In a series of previous publications [4, 5] we demonstrated the experimental viability of the WRS and measured some of the relevant system parameters of the device. More recently, we published details on how the device could be used to build multistage all-optical self-routing networks. We also developed a simulation model and estimated the maximum number of stages that can be cascaded in such networks. The work presented in this paper carries the simulation results one step further, and investigates some of the possible topologies that can be used for WRS networks, as well as the system implications of these topologies. To facilitate a better understanding of the concepts presented, we briefly review the device functionality and the main experimental results that affect the system performance. We then show how to implement some of the building blocks we use in the self-routing topologies, and explain the equalization mechanism necessary for using WRS in multistage networks. We then compare the practical advantages of the topologies of interest and decide which topology is the most probable implementation. Finally we present details on a new generation of WRS, which is waveguide based, thus more easily fabricated and integrated with optical fiber systems
High quality traveling-wave semiconductor optical amplifiers were designed and fabricated for all-optical switching applications. We obtained 21 dB small signal gain with 0.16 dB gain ripple. Measured residual reflectivity was 5 X 10-5 and the 3-dB gain bandwidth as wide as 70 nm. Our results show careful wavelength selection is required in order to match the amplifiers gain peak wavelength to the desired operating wavelength of the optical switches.
We investigated differential gain, refractive index and (alpha) -parameter in strongly index and gain guided broad- area semiconductor optical amplifiers. The measured linewidth enhancement factor is larger than the values reported for narrow-stripe lasers and is consistent with theoretical predictions.
Vertical-cavity surface-emitting lasers (VCSELs) emitting in the 1530-1565 nm region of flat gain in Er-doped fibers offer the potential for low-cost transmitters for wavelength division multiplexing (WDM). Methods are described to produce precisely-defined vertical-cavity surface-emitting laser arrays which: 1) efficiently utilize wafer real estate; 2) have precise and uniform wavelength distributions despite wafer thickness nonuniformity and wafer-to-wafer thickness variation; 3) are compatible with known multiplexing technologies; 4) have minimum wavelength variation with temperature. Epitaxial growth on patterned substrates with varying-size mesas has been shown to produce multiple-wavelength VCSEL arrays by Iga's group at the Tokyo Institute of Technology. This can be combined with additional refinements to fine tune the wavelengths, increase yield, and to maximize VCSEL efficiency, manufacturability and performance. Multi-wavelength VCSEL arrays represent a much lower cost, more controllable alternative to distributed-feedback laser arrays for WDM sources. The difference in laser output powers can be largely compensated via use of an Er-doped fiber amplifier within the transmitter. Reports such as that by ElectroniCast point to transmitters and receivers as being the most vital WDM components, in terms of both cost and technology.
Low threshold current single quantum well InGaAs/GaAs lasers are fabricated by metalorganic chemical vapor deposition on a nonplanar substrate. By taking advantage of the growth rate and doping differences on different crystal facets during the growth, an almost- buried heterostructure laser is made by a single growth step. Threshold currents as low as 1.0 mA under pulsed operation and 1.2 mA under continuous-wave operation are obtained for uncoated lasers at room-temperature. The lasers showed high external quantum efficiency (80%). High reflection coated laser (95%/95%) has a cw threshold current as low as 0.28 mA.
Strained InGaAs/GaAs quantum well three terminal lasers with monolithically integrated intracavity modulators were fabricated using low threshold current structures formed by the temperature engineered growth (TEG) technique. An on-off efficiency ratio of 556 with optical power contrast ratio of 7.5 was measured with a total DC power consumption of 25.3 mW. Preliminary digital modulation shows bit error rate (BER) lower than 10-16 at 500 Mb/s. A theoretical analysis of the dynamic behavior of this device shows potential operation of 6.6 Gb/s with low inter-symbol interference.
Physical parameters contributing to the threshold current and its temperature characteristics of 1.5 micrometers semiconductor lasers have been separately measured in lattice matched and compressively strained lasers. It is found that the reduction of threshold current density in strained devices is attributed to the reduction of Auger recombination, intervalence band absorption and transparency carrier density brought about by the introduction of strain. It is also found that the temperature sensitivity of both lattice matched and strained devices is dominated by the strong differential gain change with temperature, instead of Auger recombination.
The temperature engineered growth (TEG) technique for the single step fabrication of buried heterostructure lasers is reviewed. GaAs/AlGaAs quantum well lasers and strained InGaAs/GaAs quantum well lasers have been fabricated with threshold current of 2 mA and 3 mA for the GaAs and InGaAs systems, respectively. We show that the use of strained quantum wells resulted in better collection of carriers and higher external quantum efficiency (88%). The growth of strained InGaAs/GaAs lasers integrated with Bragg reflectors utilizing the TEG technique is shown to be a promising technique for obtaining low threshold current surface emitting lasers incorporating a folded cavity.
An optically gated thyristor based on GaAs has been designed fabricated and investigated for pulsed power applications. The device included a 200-pm semi-insulating base layer and was triggered with an 848-nm 1-pJ 100-nsec laser diode. The DC blocking voltage of the thyristor was observed to be V the peak current 300 A and the current rate of rise A/sec. Lock-on effect was also observed and is discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.