The field of infrared spectral imaging and microscopy is advancing rapidly due in large measure to the recent commercialization of the first high-throughput, high-spatial-definition quantum cascade laser (QCL) microscope. Having speed, resolution and noise performance advantages while also eliminating the need for cryogenic cooling, its introduction has established a clear path to translating the well-established diagnostic capability of infrared spectroscopy into clinical and pre-clinical histology, cytology and hematology workflows.
Demand for even higher throughput while maintaining high-spectral fidelity and low-noise performance continues to drive innovation in QCL-based spectral imaging instrumentation. In this talk, we will present for the first time, recent technological advances in tunable QCL photonics which have led to an additional 10X enhancement in spectral image data collection speed while preserving the high spectral fidelity and SNR exhibited by the first generation of QCL microscopes. This new approach continues to leverage the benefits of uncooled microbolometer focal plane array cameras, which we find to be essential for ensuring both reproducibility of data across instruments and achieving the high-reliability needed in clinical applications. We will discuss the physics underlying these technological advancements as well as the new biomedical applications these advancements are enabling, including automated whole-slide infrared chemical imaging on clinically relevant timescales.
High-fidelity, broadly-tunable quantum cascade lasers (QCLs) are replacing thermal light sources in next-generation infrared chemical imaging and microscopy instrumentation. Their superior spectral brightness, beam quality, and reliability are enabling new applications in biomedical, pharmaceutical, and industrial markets which demand substantially better noise performance, higher throughput, and ease-of-use. In this talk we will discuss the state-of-the-art in QCL source technology and describe our systems approach to leveraging QCL sources in the next-generation of infrared chemical imaging microscopes.
In this research, a sensor performance measurement technique is developed similar to the Triangle Orientation Discrimination (TOD), but sinusoids are used instead of triangles. Also, instead of infrared systems, the technique is applied to the eye and direct view optics. This new technique is called Contrast Threshold Function Orientation Discrimination (CTFOD) and the result is a "system" contrast threshold function that can be used with Vollmerhausen's Target Task Performance (TTP) metric. The technique is a simple technique that can be measured in the field using a target board where the results provide for the eye, the optics transfer function and transmission, and any atmospheric turbulence effects that are present.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.