Hexagonal boron nitride (h-BN), a two-dimensional (2D) ultrawide-bandgap semiconductor, has seen fast progress in the last decade and attracted tremendous attention and intensive investigation for its association with III-Nitride heterostructures. More specifically, the weak van der Waals interactions between the III-Nitrides heterostructures and 2D h-BN layers is a major enabler because it allows a mechanical release and transfer of freestanding membranes of III-Nitrides heterostructures to foreign substrates which open new pathways for III-Nitride heterogeneous integration and flexible devices. In this talk we will present the results of our work on LEDs grown on h-BN and their transfer to foreign substrates.
Giant room temperature persistent photoconductivity in hexagonal boron nitride under UVC irradiation has been demonstrated. Scanning lasers dots on sample surface at two different wavelengths (213 and 266 nm) have been used to induce such effect, the former being more efficient. Conductivity has been increased by 6 orders of magnitude upon illumination. Such increase persists significantly for at least 6 months. Decrease of photoinduced current has been shown to be 10% more important for samples irradiated under vacuum than for those irradiated under atmospheric pressure. Type of photoinduced carriers were investigated using p-hBN/n-AlGaN junctions through C/V measurements. P-type carriers are believed to be generated by 213 nm illumination whereas 266 nm laser is supposed to trigger n-type carriers.
Combined photonic and electronic systems require diverse devices to be co-integrated on a common platform. This heterogeneous integration is made possible through several separation and transfer methods where the functioning epilayers are essentially released from their growth substrate. The use of 2D layered h-BN as a mechanical release layer has been demonstrated to be a promising technique for the hybrid integration of III-nitride devices. In this talk we will give an overview of our results on wafer-scale van der Waals epitaxy by MOVPE of different III-N heterostructure devices such as LEDs, HEMTs, solar cells, sensors and photodetectors. Furthermore, mechanical release and transfer techniques of crack-free III-N devices on foreign substrates will be presented along with a comparison between the device performances before and after transfer.
We present a critical study of LEDs on h-BN compared to the conventional LEDs on sapphire from materials characterizations, device fabrication to the device performances measurements performed before and after liftoff and transfer with and without intermediary adhesion layer to arbitrary substrates
(In)GaN p-i-n structures were grown by MOVPE on both GaN- and ZnO-coated c-sapphire substrates. XRD studies of
the as-grown layers revealed that a strongly c-axis oriented wurtzite crystal structure was obtained on both templates and
that there was a slight compressive strain in the ZnO underlayer which increased after GaN overgrowth. The InGaN
peak position gave an estimate of 13.6at% for the indium content in the active layer. SEM and AFM revealed that the
top surface morphologies were similar for both substrates, with an RMS roughness (5 μm x 5 μm) of about 10 nm.
Granularity appeared slightly coarser (40nm for the device grown on ZnO vs 30nm for the device grown on the GaN
template) however. CL revealed a weaker GaN near band edge UV emission peak and a stronger broad defect-related
visible emission band for the structure grown on the GaN template. Only a strong ZnO NBE UV emission was observed
for the sample grown on the ZnO template. Quarter-wafer chemical lift-off (CLO) of the InGaN-based p-i-n structures
from the sapphire substrate was achieved by temporary-bonding the GaN surface to rigid glass support with wax and
then selectively dissolving the ZnO in 0.1M HCl. XRD studies revealed that the epitaxial nature and strong preferential
c-axis orientation of the layers had been maintained after lift-off. This demonstration of CLO scale-up, without
compromising the crystallographic integrity of the (In)GaN p-i-n structure opens up the perspective of transferring GaN
based devices off of sapphire substrates industrially.
Free-standing (0002)-oriented GaN substrates (φ = 2”) were coated with 200 nm of ZnO and used as templates for the
growth of GaN thin films. SEM and AFM revealed that such GaN layers had a relatively homogenous surface
morphology with an RMS roughness (5 μm x 5 μm) of less than 4nm. XRD studies revealed strained ZnO growth on the GaN substrate and the reproduction of the substrate rocking curve for the GaN overlayers after only a hundred nm of
growth, thus indicating that the GaN films had superior crystallographic quality compared to those grown on sapphire or
ZnO/sapphire substrates. Quarter-wafer areas of GaN were removed from the GaN substrate (by selective chemical
etching away of the ZnO interlayer). The expensive GaN substrates were then reclaimed/reused (without the need for
polishing) for a second cycle of ZnO and GaN growth, which gave similar XRD, SEM, CL and AFM results to the first
cycle.
In the last decades, development of the (Al,Ga,In)N materials has led to new generations of opto- and micro-electronic
devices. More recently, novel B(Al,Ga,In)N alloys have been proposed for optical applications in the UV range. Since
material containing boron possesses unique properties, the B(Al,Ga,In)N materials system is expected to permit the
design of improved and/or novel devices. To evaluate this potential, an improved knowledge of the physical properties of
these new materials will be required, however.
In this work, investigation of optical, structural, and compositional properties of low-boron content BGaN and BAlN
ternary and BInGaN quaternary materials grown through Metalorganic Vapor Phase Epitaxy (MOVPE) are presented. It
is shown that inclusion of a small amount of boron strongly affects the optical properties allowing the fabrication of
BGaN-based Distributed Bragg Reflectors (DBRs) or Distributed Bragg Confinement layers (DBCs) with large
refractive index contrast. Indeed, 1% of boron in BGaN/GaN multilayer structures gives a refractive index contrast of
more than 0.1, which is equivalent to that of AlGaN/GaN containing 22% aluminum. The potential of boron-based
material technology is illustrated for visible range solar cells applications through the example of BInGaN with good
crystalline quality grown on ZnO buffered silicon substrates. It was found that through boron introduction, reduced
lattice mismatch, and thus reduced tensile strain, could be obtained for high In contents.
InGaN/GaN layers were grown on ZnO-buffered Si (111) substrates by metalorganic vapour phase
epitaxy (MOVPE). The dissociation of ZnO observed during conventional MOVPE growth of
InGaN/GaN was combated through the use of a low pressure/temperature MOVPE approach with N2
as a carrier gas and dimethylhydrazine added to the ammonia (nitrogen precursor) in order to
enhance the concentration of atomic nitrogen at relatively low temperature. Electron Microscopy of
cross-sections, High Resolution X-Ray Diffraction (HR-XRD), secondary ion mass spectroscopy
and cathodoluminescence studies suggested that single phase wurtzite InGaN layers with between
about 17.5 and 21.5% indium were grown epitaxially, with no evidence of back-etching of the ZnO
templates. HR-XRD revealed highly pronounced c-axis texture for both the InGaN/GaN and ZnO.
Immersion in dilute nitric acid dissolved the ZnO such that the InGaN/GaN could be lifted-off from
the substrate.
We present a fiber based source of entangled photon-pairs in the 1550 nm telecom band that can be integrated into the existing fiber network and is well suited for quantum information processing. With this source we have demonstrated the generation, storage, and long-distance distribution of polarization entanglement in standard optical fiber. We have also investigated the origin of the large number of accidental coincidences in the experiments, which has been proved to be Raman scattering, and discussed how to suppress the Raman scattering to improve the quality of the fiber source.
We present the design and construction of a high-speed telecom-band (1.5 μm) single-photon counting system based on an InGaAs/InP avalanche photodiode (APD) operating in the gated Geiger mode. The detector can be gated at high speeds (we examine its performance up to 25 MHz) to maximize the counting rate in long-distance, telecom-band, fiber-optic quantum communication applications. Narrow gate pulses (250 ps full width at half maximum) are used to reduce the dark-count and the after-pulse probability. In order to count the avalanche events, we employ a high-speed comparator to sample the unfiltered and unamplified avalanche photocurrent. The APD and all the associated electronics are integrated onto a printed circuit board with a computer interface. In addition, we cool the APD to -27°C to reduce the dark-count probability.
We review on-going progress in the development of fiber-based
telecom-band entanglement sources. Two different schemes (a
Sagnac-loop scheme and a counter-propagating scheme) for
generating polarization entanglement are reviewed and the pros and
cons of each are summarized. A new scheme, called the double-loop
scheme is proposed, which is theoretically shown to be capable of
combining the benefits and avoiding the pitfalls of each previous
scheme.
We derive a CW theory for optical-fiber photon-pair sources, including the effect of non-zero response time of the fiber's Kerr nonlinearity. We also include the effects of realistic transmission and detection losses. This theory predicts stronger photon-number correlations than seen experimentally with a pulsed pump, showing the need for development of a pulsed pump theory.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.