The NULLTIMATE project developed and realized three concepts of achromatic phase shifters for nulling interferometry.
One of the concepts is based on dispersive plates made of three materials which where fully
characterized regarding their refractive index and thermo-optic behavior between 100K and 330 K. The other
two concepts are based on mirror optics, one of which uses the phase shift of π when crossing a focus, the
other the reversal of electric fields at reflection. An optical bench has been set up to test and characterize these
phase shifters at wavelengths 2 − 2.4 μm with the option of changing to the 10 μm domain. We summarize the
development of the achromatic phase shifters and report on the current status of the test bench.
In the literature you could find requirements for nulling IR interferometry in terms of nulling ratio nl and
stability of this nulling ratio σnl for the observation of a exo-Earth gravitating at 1au of a solar type star
located at 10pc from the Earth: nl = 10-5 between 7 and 20um and σnl = 3•10-9 over 10 days.1 These
requirements are very demanding. We report on studies made to obtain the technological requirements in
terms of nulling ratio and stability of this nulling ratio in function of the targeted planets and stars. Finally
we will present methods of dithering developed for the NULLTIMATE testbench to achieve to the maximum
stability.
The infrared optical telescope array (IOTA), one of the most productive interferometers in term of science and
new technologies was decommissioned in summer 2006. We discuss the testing of a low-resolution spectrograph
coupled with the IOTA-3T integrated-optics beam combiner and some of the scientific results obtained from this
instrument.
KEYWORDS: Interferometers, Nulling interferometry, Data acquisition, Servomechanisms, Signal detection, Signal to noise ratio, Metrology, Phase shifts, Exoplanets, Interferometry
Nulling interferometry has been suggested as the underlying principle for an instrument which could provide direct detection
and spectroscopy of Earth-like exo-planets, including searches for potential bio-signatures. This paper documents
the potential of optical path difference (OPD) stabilisation with dithering methods for improving the mean nulling ratio
and its stability. The basic dithering algorithm, its refined versions and parameter tuning, are reviewed. This paper takes
up the recently presented results1 and provides an update on OPD-stabilisation at significantly higher levels of nulling
performance.
The achromatic phase shifter (APS) is a component of the Bracewell nulling interferometer studied in preparation
for future space missions (viz. Darwin/TPF-I) focusing on spectroscopic study of Earth-like exo-planets. Several
possible designs of such an optical subsystem exist. Four approaches were selected for further study. Thales
Alenia Space developed a dielectric prism APS. A focus crossing APS prototype was developed by the OCA,
Nice, France. A field reversal APS prototype was prepared by the MPIA in Heidelberg, Germany. Centre Spatial
de Liege develops a concept based on Fresnel's rhombs. This paper presents a progress report on the current
work aiming at evaluating these prototypes on the Synapse test bench at the Institut d'Astrophysique Spatiale
in Orsay, France.
We present a brief review of recent scientific and technical advances at the Infrared Optical Telescope Array (IOTA). IOTA is a long-baseline interferometer located atop Mount Hopkins, Arizona. Recent work has emphasized the use of the three-telescope interferometer completed in 2002. We report on results obtained on a range of scientific targets, including AGB stars, Herbig AeBe Stars, binary stars, and the recent outburst of the recurrent nova RS Oph. We report the completion of a new spectrometer which allows visibility measurements at several high spectral resolution channels simultaneously. Finally, it is our sad duty to report that IOTA will be closed this year.
Closure-phase science and technology are dominant features of the recent activity at IOTA.
Our science projects include imaging several spectroscopic binary stars, imaging YSOs including Herbig AeBe stars, detecting asymmetries in a large sample of Mira stars, and measuring water shells around Miras.
Many technology projects were pursued in order to make these science observations possible. These include installation of a third-generation integrated-optics 3-beam combiner (IONIC), completion of the real-time control system software, installation of fringe-packet tracking software, use of narrow sub-H band filters, validation of
the phase-closure operation, development of CPLD control of the science camera (PICNIC) and star-tracker camera (LLiST), installation of a new star-tracker camera, expansion of the observing facility, and installation of new semi-automated optical alignment tools.
The tip-tilt correction system at the Infrared Optical Telescope Array (IOTA) has been upgraded with a new star tracker camera.
The camera features a backside-illuminated CCD chip offering doubled overall quantum efficiency and a four times higher system gain compared to the previous system. Tests carried out to characterize the new system showed a higher system gain with a lower read-out noise electron level. Shorter read-out cycle times now allow to compensate tip-tilt fluctuations so that their error imposed on visibility measurements becomes comparable to, and even smaller than, that of higher-order aberrations.
The mid-infrared interferometric instrument MIDI is currently undergoing testing in preparation for commissioning on the Very Large Telescope Interferometer VLTI at the end of this year 2002. It will perform interferometric observations over the 8 μm - 13 μm wavelength range, with a spatial resolution of 20 milliarcsec, a spectral resolution of up to 250, and an anticipated point source sensitivity of N = 4 mag or 1 Jy for self-fringe tracking, which will be the only observing mode during the first months of operation. We describe the layout of the instrument and the performance during laboratory tests, both for broadband and spectrally resolved observing modes. We also briefly outline the planned guaranteed time observations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.