Wide-Area Linear Optical Polarimeter (WALOP)-South is the first wide-field and survey-capacity polarimeter in the optical wavelengths. On schedule for commissioning in 2024, it will be mounted on the 1 m SAAO telescope in Sutherland Observatory, South Africa to undertake the PASIPHAE sky survey. PASIPHAE program will create the first polarimetric sky map in the optical wavelengths, spanning more than 2000 square degrees of the southern Galactic region. In a single exposure, WALOP-South’s innovative design will enable it to measure the linear polarization (Stokes parameters q and u) of all sources in a field of view (FoV) of 35 × 35 arc-minutes-squared in the SDSS-r broadband and narrowband filters between 500-750 nm with 0.1 % polarization accuracy. The unique goals of the instrument place very stringent systems engineering goals, including on the performance of the optical, polarimetric, optomechanical, and electronic subsystems. In particular, the major technical hurdles for the project included the development of: (a) an optical design to achieve imaging quality PSFs across the FoV, (b) an optomechanical design to obtain high accuracy optical alignment in conjugation with minimal instrument flexure and stress birefringence on optics (which can lead to variable instrumental polarization), and (c) an on-sky calibration routine to remove the strong polarimetric cross-talk induced instrumental polarization to obtain 0.1% across the FoV. All the subsystems have been designed carefully to meet the overall instrument performance goals. As of May 2024, all the instrument optical and mechanical subsystems have been assembled and are currently getting tested and integrated. The complete testing and characterization of the instrument in the lab is expected to be completed by August 2024. While the instrument was initially scheduled for commissioning in 2022, it got delayed due to various technical challenges; WALOP-South is now on schedule for commissioning in second half of 2024. In this paper, we will present (a) the design and development of the entire instrument and its major subsystems, focusing the instrument’s opto-mechanical design which has not been reported before, and (b) assembly and integration of the instrument in the lab and early results from lab characterization of the instrument’s optical performance.
WALOP (Wide-Area Linear Optical Polarimeter)-South, to be mounted on the 1m SAAO telescope in South Africa, is first of the two WALOP instruments currently under development for carrying out the PASIPHAE survey. Scheduled for commissioning in the year 2021, the WALOP instruments will be used to measure the linear polarization of around 106 stars in the SDSS-r broadband with 0.1 % polarimetric accuracy, covering 4000 square degrees in the Galactic polar regions. The combined capabilities of one-shot linear polarimetry, high polarimetric accuracy (< 0.1 %) and polarimetric sensitivity (< 0.05 %), and a large field of view (FOV) of
35 35 arcminutes make WALOP-South a unique astronomical instrument. In a single exposure, it is designed to measure the Stokes parameters I, q and u in the SDSS-r broadband and narrowband filters between 500-700 nm. During each measurement, four images of the full field corresponding to the polarization angles of 0°, 45°, 90° and 135° will be imaged on four detectors and carrying out differential photometry on these images will yield the Stokes parameters. Major challenges in designing WALOP-South instrument include- (a) in the optical design, correcting for the spectral dispersion introduced by large split angle Wollaston Prisms used as polarization analyzers as well as aberrations from the wide field, and (b) making an optomechanical design adherent to the tolerances required to obtain good imaging and polarimetric performance under all temperature conditions as well as telescope pointing positions. We present the optical and optomechanical design for WALOP-South which
overcomes these challenges.
Robo-AO is the first robotic autonomous laser-guided adaptive optics (AO) system operating in the sky. It is a very economical AO system especially suitable for observations with 1- to 3-m class telescopes. A second Robo-AO system, which works both in the visible and near-infrared wavelengths, has been developed to improve the image quality of the 2-m diameter telescope at Inter-university Centre for Astronomy and Astrophysics Girawali Observatory in India. We present the optomechanical design and development of the Laser Guide Star Facility (LGSF) and the Cassegrain AO facility with various test results. Effects of different projection geometries of the LGSF have been discussed with modeling results. Comprehensive study of an atmospheric dispersion corrector with dispersion model and development of a generic software are elaborated with experimental results. Toward the end, AO loop test results in the presence of artificial turbulence generated in the laboratory are presented.
Atmospheric turbulence is gentle in the infrared regime than visible. Hence adaptive optics (AO) efficiently works in the infrared. The large overheads and low efficiency still limit the applicability of AO on large telescopes for which operational costs per unit time are high. On the other hand, small and medium-sized telescopes are many more in number, and their operational costs are substantially lower. A reasonably powerful AO system, which works with minimal overheads and provides good sky coverage, will greatly enhance the scientific capabilities of small and medium-sized telescopes. Robotic Adaptive Optics (Robo-AO) is an AO system for medium-sized telescopes which is built by Caltech, USA, and IUCAA, India collaboratively. It works with minimal overheads and provides good sky coverage in both visible and infrared regime. The first version of Robo-AO does not have a high-quality IR camera. An IR camera is being developed to accommodate AO-corrected 1.5 0 field of view in near-infrared bands. It can be used as a science camera as well as a tip-tilt camera. It is being built at IUCAA with a HAWAII detector. Here we describe the salient features of the IR camera like optics, optomechanical design, etc.
The IUCAA digital sampling array controller (IDSAC) is a flexible and generic yet powerful CCD controller that can handle a wide range of scientific detectors. Based on an easily scalable modular backplane architecture consisting of single board controllers (SBC), IDSAC can control large detector arrays and mosaics. Each of the SBCs offers the full functionality required to control a CCD independently. The SBCs can be cold swapped without the need to reconfigure them. IDSAC is also available in a backplane-less architecture. Each SBC can handle data from up to four video channels with or without dummy outputs at speeds up to 500-kilo pixels per second (kPPS) per channel with a resolution of 16 bits. Communication with a Linux-based host computer is through a USB3.0 interface, with the option of using copper or optical fibers. A field programmable gate array (FPGA) is used as the master controller in each SBC, which allows great flexibility in optimizing performance by adjusting gain, timing signals, bias levels, etc., using user-editable configuration files without altering the circuit topology. Elimination of thermal kTC noise is achieved via digital correlated double sampling (DCDS). The number of digital samples per pixel (for both reset and signal levels) is user configurable. We present the results of noise performance characterization of IDSAC through simulation, theoretical modeling, and actual measurements. The contribution of different types of noise sources is modeled using a tool to predict noise of a generic DCDS signal chain analytically. The analytical model predicts the net input referenced noise of the signal chain to be 5 electrons for 200-k pixels/s per channel readout rate with three samples per pixel. Using a cryogenic test setup in the lab, the noise is measured to be 5.4 e (24.3 μV), for the same readout configuration. With a better-optimized configuration of 500-kPPS readout rate, the measured noise is down to 3.8 electrons RMS (17 μV), with three samples per interval.
We present fore-optics and calibration unit design of Devasthal Optical Telescope Integral Field Spectrograph (DOTIFS). DOTIFS fore-optics is designed to modify the focal ratio of the light and to match its plate scale to the physical size of Integral Field Units (IFUs). The fore-optics also delivers a telecentric beam to the IFUs on the telescope focal plane. There is a calibration unit part of which is combined with the fore-optics to have a light and compact system. We use Xenon-arc lamp as a continuum source and Krypton/Mercury-Neon lamps as wavelength calibration sources. Fore-optics and calibration unit shares two optical lenses to maintain compactness of the overall subsystem. Here we present optical and opto-mechanical design of the calibration unit and fore-optics as well as calibration scheme of DOTIFS.
Devasthal Optical Telescope Integral Field Spectrograph (DOTIFS) is a new multi-Integral Field Unit (IFU) instrument, planned to be mounted on the 3.6m Devasthal optical telescope in Nainital, India. It has eight identical, fiber-fed spectrographs to disperse light coming from 16 IFUs. The spectrographs produce 2,304 spectra over a 370-740nm wavelength range simultaneously with a spectral resolution of R=1200-2400. It is composed of all-refractive, allspherical optics designed to achieve on average 26.0% throughput from the telescope to the CCD with the help of high transmission spectrograph optics, volume phase holographic grating, and graded coated e2v 2K by 4K CCD. We present the optical and opto-mechanical design of the spectrograph as well as current development status. Optics and optomechanical components for the spectrographs are being fabricated.
The South African Astronomical Observatory (SAAO) is currently developing WiNCam, the Wide-field Nasmyth Camera, to be mounted on Lesedi, the observatory’s new 1-metre telescope. This paper discusses the design and results for the remotely-operated camera system. The camera consists of an E2V-231-C6 Back Illuminated Scientific Charge Coupled Device (CCD) sensor with 6144x6160 pixels, four outputs operating in non-inverted mode. This is to date the largest single chip CCD-system developed at SAAO. The CCD is controlled with a modified Inter-University Centre for Astronomy and Astrophysics (IUCAA) Digital Sampler Array Controller (IDSAC) utilizing digital correlated double sampling. The camera system will have full-frame and frame-transfer read out modes available with sub-windowing and pre-binning abilities. Vacuum through-wall PCB technology is used to route signals through the vacuum interface between the controller and the CCD. A thin, compact, 125x125mm aperture, sliding-curtain-mechanism shutter was designed and manufactured together with a saddle-type filter-magazine-gripper system. The CCD is cryogenically cooled using a Stirling Cooler with active vibration cancellation; CCD temperature control is done with a Lake Shore Temperature Controller. A Varian Ion Pump and Activated Charcoal are used to maintain good vacuum and to prolong intervals between vacuum pump down. The various hardware components of the system are connected using distributed software architecture, and a web-based GUI allows remote and scripted operation of the instrument.
CIRCE is a near-infrared (1-2.5 micron) imager (including low-resolution spectroscopy and polarimetery) in operation as a visitor instrument on the Gran Telescopio Canarias 10.-4m tele scope. It was built largely by graduate students and postdocs, with help from the UF Astronomy engineering group, and is funded by the University of Florida and the U.S. National Science Foundation. CIRCE is helping to fill the gap in time between GTC first light and the arrival of EMIR, and will also provide the following scientific capabilities to compliment EMIR after its arrival: high-resolution imaging, narrowband imaging, high-time-resolution photometry, polarimetry, and low-resolution spectroscopy. There are already scientific results from CIRCE, some of which we will review. Additionally, we will go over the observing modes of CIRCE, including the two additional modes that were added during a service and upgrading run in March 2016.
ISDEC-2 - IUCAA1 SIDECAR Drive Electronics Controller is an alternative for Teledyne make JADE2 based controller for HAWAII detectors. It is a ready to use complete package and has been developed keeping in mind general astronomical requirements and widely used observatory set-ups like preferred OS-Linux , multi-extension fits output with fully populated headers (with detector as well as telescope and observation specific information), etc. Actual exposure time is measured for each frame to a few tens of microsecond accuracy and put in the fits header. It also caters to several application specific requirements like fast resets, strip mode, multiple region readout with on board co-adding, etc. ISDEC-2 is designed to work at -40 deg. and is already in use at observatories worldwide. ISDEC-3 is an Artix-7 FPGA based SIDECAR Drive Electronics Controller currently being developed at IUCAA. It will retain all the functionality supported by ISDEC-2 and will also support the operation of H2RG in continuos, fast (32 output, 5 MSPS, 12 bit) mode. It will have a 5 Gbps USB 3.0 PC interface and 1 Gbps Ethernet interface for image data transfer from SIDECAR to host PC. Additionally, the board will have DDR-3 memory for on-board storage and processing. ISDEC-3 will be capable of handling two SIDECARs simultaneously (in sync) for H2RG slow modes.
KEYWORDS: Charge-coupled devices, Video processing, Cadmium sulfide, Video, Analog electronics, Interference (communication), Clocks, Sensors, Power supplies, Signal to noise ratio
In order to run the large format detector arrays and mosaics that are required by most astronomical instruments, readout electronic controllers are required which can process multiple CCD outputs simultaneously at high speeds and low noise levels. These CCD controllers need to be modular and configurable, should be able to run multiple detector types to cater to a wide variety of requirements. IUCAA Digital Sampler Array Controller (IDSAC), is a generic CCD Controller based on a fully scalable architecture which is adequately flexible and powerful enough to control a wide variety of detectors used in ground based astronomy. The controller has a modular backplane architecture that consists of Single Board Controller Cards (SBCs) and can control up to 5 CCDs (mosaic or independent). Each Single Board Controller (SBC) has all the resources to a run Single large format CCD having up to four outputs. All SBCs are identical and are easily interchangeable without needing any reconfiguration. A four channel video processor on each SBC can process up to four output CCDs with or without dummy outputs at 0.5 Megapixels/Sec/Channel with 16 bit resolution. Each SBC has a USB 2.0 interface which can be connected to a host computer via optional USB to Fibre converters. The SBC uses a reconfigurable hardware (FPGA) as a Master Controller. IDSAC offers Digital Correlated Double Sampling (DCDS) to eliminate thermal kTC noise. CDS performed in Digital domain (DCDS) has several advantages over its analog counterpart, such as - less electronics, faster readout and easier post processing. It is also flexible with sampling rate and pixel throughput while maintaining the core circuit topology intact. Noise characterization of the IDSAC CDS signal chain has been performed by analytical modelling and practical measurements. Various types of noise such as white, pink, power supply, bias etc. has been considered while creating an analytical noise model tool to predict noise of a controller system like IDSAC. Several tests are performed to measure the actual noise of IDSAC. The theoretical calculation matches very well with practical measurements within 10% accuracy.
KEYWORDS: Sensors, Wavefront sensors, Control systems, Analog electronics, Multiplexers, Stars, Field programmable gate arrays, Power supplies, Electrons, Interfaces
As a part of a design study for the On-Instrument Low Order Wave-front Sensor (OIWFS) for the TMT Infra-Red Imaging Spectrograph (IRIS), we recently evaluated the noise performance of a detector control system consisting of IUCAA SIDECAR DRIVE ELECRONICS CONTROLLER (ISDEC), SIDECAR ASIC and HAWAII-2RG (H2RG) MUX. To understand and improve the performance of this system to serve as a near infrared wavefront sensor, we implemented new read out modes like multiple regions of interest with differential multi-accumulate readout schemes for the HAWAII-2RG (H2RG) detector. In this system, the firmware running in SIDECAR ASIC programs the detector for ROI readout, reads the detector, processes the detector output and writes the digitized data into its internal memory. ISDEC reads the digitized data from ASIC, performs the differential multi-accumulate operations and then sends the processed data to a PC over a USB interface. A special loopback board was designed and used to measure and reduce the noise from SIDECAR ASIC DC biases2. We were able to reduce the mean r.m.s read noise of this system down to 1-2 e. for any arbitrary window frame of 4x4 size at frame rates below about 200 Hz.
KEYWORDS: Space operations, Ultraviolet radiation, Space telescopes, Telescopes, Space telescopes, Solar processes, Sensors, X-ray imaging, Plasma, Ions, Magnetosphere
The Solar Ultraviolet Imaging Telescope (SUIT) is an instrument onboard the Aditya-L1 spacecraft, the first dedicated solar mission of the Indian Space Research Organization (ISRO), which will be put in a halo orbit at the Sun-Earth Langrage point (L1). SUIT has an off-axis Ritchey–Chrétien configuration with a combination of 11 narrow and broad bandpass filters which will be used for full-disk solar imaging in the Ultravoilet (UV) wavelength range 200-400 nm. It will provide near simultaneous observations of lower and middle layers of the solar atmosphere, namely the Photosphere and Chromosphere. These observations will help to improve our understanding of coupling and dynamics of various layers of the solar atmosphere, mechanisms responsible for stability, dynamics and eruption of solar prominences and Coronal Mass ejections, and possible causes of solar irradiance variability in the Near and Middle UV regions, which is of central interest for assessing the Sun’s influence on climate.
The Robert Stobie Spectrograph Near Infrared Instrument (RSS-NIR), a prime focus facility instrument for the 11-meter
Southern African Large Telescope (SALT), is well into its laboratory integration and testing phase. RSS-NIR will
initially provide imaging and single or multi-object medium resolution spectroscopy in an 8 arcmin field of view at
wavelengths of 0.9 - 1.7 μm. Future modes, including tunable Fabry-Perot spectral imaging and polarimetry, have been
designed in and can be easily added later. RSS-NIR will mate to the existing visible wavelength RSS-VIS via a dichroic
beamsplitter, allowing simultaneous operation of the two instruments in all modes. Multi-object spectroscopy covering a
wavelength range of 0.32 - 1.7 μm on 10-meter class telescopes is a rare capability and once all the existing VIS modes
are incorporated into the NIR, the combined RSS will provide observational modes that are completely unique.
The VIS and NIR instruments share a common telescope focal plane, and slit mask for spectroscopic modes, and
collimator optics that operate at ambient observatory temperature. Beyond the dichroic beamsplitter, RSS-NIR is
enclosed in a pre-dewar box operating at -40 °C, and within that is a cryogenic dewar operating at 120 K housing the
detector and final camera optics and filters. This semi-warm configuration with compartments at multiple operating
temperatures poses a number of design and implementation challenges. In this paper we present overviews of the RSSNIR
instrument design and solutions to design challenges, measured performance of optical components, detector
system optimization results, and an update on the overall project status.
SIDECAR is an Application Specific Integrated Circuit (ASIC), which can be used for control and data acquisition from
near-IR HAWAII detectors offered by Teledyne Imaging Sensors (TIS), USA. The standard interfaces provided by
Teledyne are COM API and socket servers running under MS Windows platform. These interfaces communicate to the
ASIC (and the detector) through an intermediate card called JWST ASIC Drive Electronics (JADE2). As part of an
ongoing programme of several years, for developing astronomical focal plane array (CCDs, CMOS and Hybrid)
controllers and data acquisition systems (CDAQs), IUCAA is currently developing the next generation controllers
employing Virtex-5 family FPGA devices. We present here the capabilities which are built into these new CDAQs for
handling HAWAII detectors. In our system, the computer which hosts the application programme, user interface and
device drivers runs on a Linux platform. It communicates through a hot-pluggable USB interface (with an optional
optical fibre extender) to the FPGA-based card which replaces the JADE2. The FPGA board in turn, controls the
SIDECAR ASIC and through it a HAWAII-2RG detector, both of which are located in a cryogenic test Dewar set up
which is liquid nitrogen cooled. The system can acquire data over 1, 4, or 32 readout channels, with or without binning,
at different speeds, can define sub-regions for readout, offers various readout schemes like Fowler sampling, up-theramp
etc. In this paper, we present the performance results obtained from a prototype system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.