Mobile laser scanning (MLS), which can quickly collect a high-resolution and high-precision point cloud of the surroundings of a vehicle, is an appealing technology for three-dimensional (3D) urban scene analysis. In this regard, the classification of MLS point clouds is a common and core task. We focus on pointwise classification, in which each individual point is categorized into a specific class by applying a binary classifier involving a set of local features derived from the neighborhoods of the point. To speed up the neighbor search and enhance feature distinctiveness for pointwise classification, we exploit the topological and semantic information in the raw data acquired by light detection and ranging (LiDAR) and recorded in scan order. First, a two-dimensional (2D) scan grid for data indexing is recovered, and the relative 3D coordinates with respect to the LiDAR position are calculated. Subsequently, a set of local features is extracted using an efficient neighbor search method with a low computational complexity independent of the number of points in a point cloud. These features are further merged to produce a variety of binary classifiers for specific classes via a GentleBoost supervised learning algorithm combining decision trees. The experimental results on the Paris-rue-Cassette database demonstrate that the proposed approach outperforms the state-of-the-art methods with a 10% improvement in the F1 score, whereas it uses simpler geometric features derived from a spherical neighborhood with a radius of 0.5 m.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.