We discuss the electric field tuning of ferroelectric liquid crystal microlasers. The microlasers were made of 90:10 wt % mixture of CE3 and CE14 ferroelectric liquid crystals (FLCs), which was doped with ~0.1% Pyrromethene 580 fluorescent dye. The ferroelectric Sm C* phase was observed between 42°C and 74°C. The droplets were embedded into the CYTOP CTX-809A, a polymer with low electric conductivity and high viscosity. Within the temperature range 42-60°C the droplets obtained good homeotropic structure with the perpendicular anchoring of the molecules to the surface of the droplets. When the droplets were illuminated with a 532 nm pulsed laser light, Whispering Gallery Mode lasing was observed. The application of a low frequency electric field induced a red-shift of the WGM resonance peaks. The shift was reversible and had a quadratic dependency on the electric field. The observed tuning range was 4.5 nm for 2 V/μm applied electric field. The observed behaviour is explained by the soliton-like deformation of the helical ferroelectric Sm C* structure in an external electric field.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.