Lung cancer has high mortality and occurrence worldwide. Radiomics is a method for extracting quantitative features from medical images that can be used for predictive analysis. Radiomics has been applied quite successfully for lung nodule malignancy prediction. Along with traditional radiomics, Convolutional Neural Networks (CNN) are now used quite effectively for lung cancer analysis. Texture provides information about variation in pixel intensity in regions. Lung nodules/tumors possess a noticeable texture pattern. That’s why texture radiomics features can be used to construct predictive models to analyze malignant and benign lung nodules. As textures show visible patterns, training the CNNs using texture images is a novel idea that enables the creation of an ensemble of classifiers. In this study, 192 texture images (wavelet, Laws, gray level zone matrix, neighborhood grey tone difference, and run-length) were generated, and the same CNN architecture was trained separately on all texture images. We termed this approach, “Deep Radiomics.” The maximum classification accuracy of 73% and 0.82 AUC was achieved from both the P2L2C5 wavelet and L5E5L5 laws texture images. When multiple CNN model’s predictions were merged to generate an ensemble model, results of 81.43% (0.91 AUC) were achieved from our study, which was an improvement.
Purpose: Due to the high incidence and mortality rates of lung cancer worldwide, early detection of a precancerous lesion is essential. Low-dose computed tomography is a commonly used technique for screening, diagnosis, and prognosis of non-small-cell lung cancer. Recently, convolutional neural networks (CNN) had shown great potential in lung nodule classification. Clinical information (family history, gender, and smoking history) together with nodule size provide information about lung cancer risk. Large nodules have greater risk than small nodules.
Approach: A subset of cases from the National Lung Screening Trial was chosen as a dataset in our study. We divided the nodules into large and small nodules based on different clinical guideline thresholds and then analyzed the groups individually. Similarly, we also analyzed clinical features by dividing them into groups. CNNs were designed and trained over each of these groups individually. To our knowledge, this is the first study to incorporate nodule size and clinical features for classification using CNN. We further made a hybrid model using an ensemble with the CNN models of clinical and size information to enhance malignancy prediction.
Results: From our study, we obtained 0.9 AUC and 83.12% accuracy, which was a significant improvement over our previous best results.
Conclusions: In conclusion, we found that dividing the nodules by size and clinical information for building predictive models resulted in improved malignancy predictions. Our analysis also showed that appropriately integrating clinical information and size groups could further improve risk prediction.
Lung cancer is a leading cause of cancer-related death worldwide and in the USA. Low Dose Computed tomography (LDCT) is the primary method of detection and diagnosis of lung cancers. Radiomics provides further analysis using LDCT scans which provide an opportunity for early detection and diagnosis of lung cancers. The convolutional neural network (CNN), a powerful method for image classification and recognition, has opened an alternative path for tumor identification and detection from LDCT scans. Nodules have different shapes, boundaries or patterns. In this study, we created feature images from different texture features of nodules and then used a CNN to classify each of the feature images. We call this approach “Deep Radiomics”. Law’s 3-D texture images were used for our analysis. Ten Law’s texture images were generated and used to train an ensemble of CNNs. Texture provides information about how an image looks. The use of feature images as CNN input is a novel approach to enable the generation and extraction of new types of features and lends itself to ensemble generation. From the LDCT arm of the national lung cancer screening study (NLST) dataset, a subset of nodule positive and screen-detected lung cancer (SDLC) cases were used in our study. The best result obtained from this study was 79.32% accuracy and 0.88 AUC, which is an improvement in accuracy over using just image features or just original images as input to CNNs for classification.
Lung cancer has a high incidence and mortality rate. Early detection and diagnosis of lung cancers is best achieved with low-dose computed tomography (CT). Classical radiomics features extracted from lung CT images have been shown as able to predict cancer incidence and prognosis. With the advancement of deep learning and convolutional neural networks (CNNs), deep features can be identified to analyze lung CTs for prognosis prediction and diagnosis. Due to a limited number of available images in the medical field, the transfer learning concept can be helpful. Using subsets of participants from the National Lung Screening Trial (NLST), we utilized a transfer learning approach to differentiate lung cancer nodules versus positive controls. We experimented with three different pretrained CNNs for extracting deep features and used five different classifiers. Experiments were also conducted with deep features from different color channels of a pretrained CNN. Selected deep features were combined with radiomics features. A CNN was designed and trained. Combinations of features from pretrained, CNNs trained on NLST data, and classical radiomics were used to build classifiers. The best accuracy (76.79%) was obtained using feature combinations. An area under the receiver operating characteristic curve of 0.87 was obtained using a CNN trained on an augmented NLST data cohort.
Radiomics is the process of analyzing radiological images by extracting quantitative features for monitoring and diagnosis of various cancers. Analyzing images acquired from different medical centers is confounded by many choices in acquisition, reconstruction parameters and differences among device manufacturers. Consequently, scanning the same patient or phantom using various acquisition/reconstruction parameters as well as different scanners may result in different feature values. To further evaluate this issue, in this study, CT images from a physical radiomic phantom were used. Recent studies showed that some quantitative features were dependent on voxel size and that this dependency could be reduced or removed by the appropriate normalization factor. Deep features extracted from a convolutional neural network, may also provide additional features for image analysis. Using a transfer learning approach, we obtained deep features from three convolutional neural networks pre-trained on color camera images. An we examination of the dependency of deep features on image pixel size was done. We found that some deep features were pixel size dependent, and to remove this dependency we proposed two effective normalization approaches. For analyzing the effects of normalization, a threshold has been used based on the calculated standard deviation and average distance from a best fit horizontal line among the features’ underlying pixel size before and after normalization. The inter and intra scanner dependency of deep features has also been evaluated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.